一类带非齐次记忆项抛物方程解的整体存在性和爆破OA北大核心CSTPCD
Global Existence and Blow-up for a Class of Parabolic Equations with Nonhomogeneous Memory Terms
该文研究一类带非齐次记忆项抛物方程的柯西问题,讨论非线性项和非齐次项对整体解存在性的影响.当非线性项指数增长高于某一值时,利用压缩映射原理,证明了整体解的存在唯一性;当非线性项指数增长低于某一值时,利用测试函数法,证明了解在有限时刻爆破.
The purpose of this paper is to study the Cauchy problem for a class of parabolic equations with non-homogeneous memo-ry term.This paper investigates the influence of nonlinear and non-homogeneous terms on the existence of global solutions.When the exponential growth of the nonlinear term is higher than a certain number,the existence and uniqueness of the global solution are proved by using the contraction mapping principle.Using the test function method,this paper proves that the solution blows up in fi-nite time when the exponential growth of the nonlinear term is lower than a certain number.
王政慧;祝雪;杨晗
西南交通大学 数学学院,四川 成都 611756
数学
柯西问题压缩映射原理测试函数法整体解爆破
Cauchy problemcontraction mapping principletest function methodglobal existenceBlow-up
《山西大学学报(自然科学版)》 2024 (005)
901-911 / 11
国家自然科学基金(11701477;11971394)
评论