融合协同过滤的自组织神经网络多样化产品推荐OA北大核心CSTPCD
Diversified Product Recommendation by Integrating Collaborative Filtering with Self-organizing Neural Network
针对个性化推荐算法推荐结果容易存在冗余的问题,提出了一种融合协同过滤的自组织神经网络的多样化产品推荐方法.首先通过用户对产品的评分构建用户-产品、用户产品类别评分表,进而采用协同过滤算法得到基于评分相似用户的产品推荐列表;其次,将用户向量输入到自组织神经网络中聚类相似用户,利用相似用户查找目标用户可能感兴趣的产品类别,形成多样化推荐列表;最后,融合两个推荐列表形成满足多样化和准确性的产品推荐结果.通过亚马逊数据集上的实验,验证了所提方法在多样化推荐指标类别覆盖率(Category Coverage,CC)和项目层面的多样性(Item-Level Diversity,ILD)能够取得较好的结果,能有效地进行多样化推荐.
Aiming at the redundancy problem of the recommendation results for personalized recommendation algorithms,a diversi-fied product recommendation method,integrating collaborative filtering with self-organizing neural network,is proposed.Firstly,the user-product rating table and user-product category rating table are constructed through the user's rating of the product.Furtherly,we adopt the collaborative filtering algorithm to get the product recommendation list based on similar users with similar ratings.Second-ly,the user vectors are input into the self-organizing neural network to cluster similar users,and the similar users are used to help se-lect the product categories that the target user may be interested in.A diversified recommendation list is formed.Finally,the two rec-ommendation lists are fused to construct the diversified and accurate product recommendation results.The experiments on the Ama-zon datasets verified that the proposed method reaches better results on category coverage(CC)and item-level diversity(ILD)index-es and can effectively carry out diversified recommendations.
张秉楠;李德玉
山西大学 计算机与信息技术学院,山西 太原 030006山西大学 计算机与信息技术学院,山西 太原 030006||山西大学 计算智能与中文信息处理教育部重点实验室,山西 太原 030006
计算机与自动化
协同过滤推荐系统自组织映射神经网络多样化
collaborative filteringrecommendation systemself-organizing neural networkdiversified
《山西大学学报(自然科学版)》 2024 (005)
954-963 / 10
国家自然科学基金(62072294)
评论