| 注册
首页|期刊导航|通信学报|基于预训练与新型时序图神经网络的智能合约漏洞检测方法

基于预训练与新型时序图神经网络的智能合约漏洞检测方法

庄园 樊泽楷 王诚 孙建国 李耀麟

通信学报2024,Vol.45Issue(9):101-114,14.
通信学报2024,Vol.45Issue(9):101-114,14.DOI:10.11959/j.issn.1000-436x.2024163

基于预训练与新型时序图神经网络的智能合约漏洞检测方法

Smart contract vulnerability detection method based on pre-training and novel timing graph neural network

庄园 1樊泽楷 1王诚 1孙建国 2李耀麟3

作者信息

  • 1. 哈尔滨工程大学计算机科学与技术学院,黑龙江 哈尔滨 150001
  • 2. 西安电子科技大学杭州研究院,浙江 杭州 311231
  • 3. 北京理工大学计算机学院,北京 100081
  • 折叠

摘要

Abstract

To address the limitations of current deep learning-based methods in extracting contract bytecode features and representing vulnerability semantics,as well as the shortcomings of the traditional graph neural networks in learning tem-poral information from contract statements,a method for detecting vulnerabilities in contracts was proposed based on pre-trained and temporal graph neural network.Firstly,the pre-trained model was used to transform smart contract byte-code into a vulnerability semantics-aware contract graph structure.Then,combined with a self-attention mechanism,the event-driven temporal graph neural network was designed to extract temporal information during contract execution.Fi-nally,focusing on reentrant vulnerabilities,timestamp dependency vulnerabilities,and Tx.origin authentication vulner-abilities,extensive experiments were conducted on a dataset of 120 932 actual contracts.The results show that the pro-posed method significantly outperforms existing approaches.

关键词

区块链/智能合约/漏洞检测/预训练模型/图神经网络

Key words

blockchain/smart contract/vulnerability detection/pre-training model/graph neural network

分类

信息技术与安全科学

引用本文复制引用

庄园,樊泽楷,王诚,孙建国,李耀麟..基于预训练与新型时序图神经网络的智能合约漏洞检测方法[J].通信学报,2024,45(9):101-114,14.

基金项目

国家自然科学基金资助项目(No.62202121) (No.62202121)

国家重点研发计划基金资助项目(No.2022YFB4400703) (No.2022YFB4400703)

中央高校基本科研业务费专项资金资助项目(No.3072022TS0604)The National Natural Science Foundation of China(No.62202121),The National Key Research and Develop-ment Program of China(No.2022YFB4400703),The Fundamental Research Funds for the Central Universities(No.3072022TS0604) (No.3072022TS0604)

通信学报

OA北大核心CSTPCD

1000-436X

访问量0
|
下载量0
段落导航相关论文