基于MobileViT的轻量型入侵检测模型研究OA北大核心CSTPCD
Research on lightweight intrusion detection model based on MobileViT
为解决入侵检测中数据不平衡对神经网络模型训练的影响和模型参数量高的问题,提出一种基于改进MobileViT的入侵检测模型.首先,使用方差分析提取对检测结果影响较高的特征,将提取后的特征转化为图像型数据,将其输入至MobileViT网络;其次,针对占比较少的攻击流量,采用焦点损失函数自适应地调整攻击流量的损失贡献,使模型更加专注于不平衡的攻击流量;最后,为解决神经元死亡问题,使用GeLU激活函数替换MobileViT网络中MV2的ReLU6激活函数,加快模型收敛速度.实验结果表明,改进的MobileViT模型参数量仅为5.67 MB,与Shufflenet、Mobilenet相比拥有最少的参数量,模型的准确率、召回率以及F1 分数分别达到了98.40%、96.49%、95.17%.
In view of the data imbalance on the training of neural network model and the large number of model parameters in intrusion detection,an intrusion detection model based on improved MobileViT is proposed.The ANOVA(analysis of variance)is used to extract the features with great impact on the detection results,and the extracted features are converted into image-based data and input into the MobileViT network.For the attack traffic with a small proportion,the focus loss function is used to adjust the loss contribution of the attack traffic adaptively,so that the model can focus more on the unbalanced attack traffic.In order to solve the problem of neuronal death,the GeLU activation function is used to replace the ReLU6 activation function of MV2 in the MobileViT network to accelerate the convergence speed of the model.The results of experiments show that the improved MobileViT model has only 5.67 MB of parameters.It has the least parameters in comparison with Shufflenet and Mobilenet.The accuracy rate,recall rate and F1 score of the model reach 98.40%,96.49%and 95.17%,respectively.
姚军;孙方超
西安科技大学 通信与信息工程学院,陕西 西安 710000
电子信息工程
入侵检测焦点损失函数数据不平衡MobileViTGeLU方差分析
intrusion detectionfocus loss functiondata imbalanceMobileViTGeLUANOVA
《现代电子技术》 2024 (019)
33-39 / 7
评论