改进YOLOv8的轻量化轴承缺陷检测算法OA北大核心CSTPCD
Lightweight bearing defect detection algorithm combined with improved YOLOv8
针对工业轴承表面缺陷检测算法精度低、模型参数量大的问题,提出一种改进YOLOv8的轻量化目标检测算法(MFA-YOLOv8).首先,设计了一种轻量化多尺度特征卷积模块EMFC,基于此重构了主干和颈部部分C2f中的Bottleneck结构,保持轻量化的同时还有效地捕获不同尺度信息的细节特征;其次,引入焦点调制模块FM,提升模型对缺陷目标的表征能力和感受野;最后,引入注意力尺度序列融合模块ASF,进一步提升网络对轴承缺陷的检测精度,减小参数规模.实验结果表明,在GGS数据集上,MFA-YOLOv8的检测精度mAP@0.5高达91.5%,较YOLOv8检测精度提升了2.4%,参数量下降了21.9%,可满足工业现场轴承外观缺陷检测要求.
In view of the low accuracy and the large number of model parameters of the surface defect detection algorithms for industrial bearings,a lightweight object detection algorithm(MFA-YOLOv8)combined with improved YOLOv8 is proposed.A lightweight multi-scale feature convolution module EMFC(efficient multi-scale feature convolution)is designed,based on which the Bottleneck structure in the partial C2f of the trunk and neck is reconstructed to maintain lightweight while also capturing the detailed features of the information with different scales effectively.The focal modulation(FM)module is introduced to enhance the model´s ability to characterize the defective objects and the receptive field of the model.The attentional scale sequence fusion(ASF)module is introduced to further improve the model´s detection accuracy of bearing defects and reduce the quantity of the parameters.The experimental results show that the mean average precision mAP@0.5 of MFA-YOLOv8 is as high as 91.5%on the GGS dataset,which is 2.4%higher than that of the YOLOv8,and its number of parameters decreases by 21.9%,so the MFA-YOLOv8 can satisfy the requirements of bearing appearance defect detection in industrial sites.
郎德宝;周凯红
广西高校先进制造与自动化技术重点实验室,广西 桂林 541006
电子信息工程
轴承表面缺陷检测YOLOv8多尺度特征卷积焦点调制网络注意力尺度序列融合轻量化
bearing surface defect detectionYOLOv8multi-scale feature convolutionfocal modulation networkASFlightweight
《现代电子技术》 2024 (019)
115-122 / 8
国家自然科学基金面上项目(52075110);广西自然科学基金重点项目(2023GXNSFDA026045)
评论