金字塔方差池化网络的图像超分辨率重建OA北大核心CSTPCD
Image super-resolution reconstruction using pyramid variance pooling network
为减少高频信息丢失对图像重建造成的影响,进一步增强对特征信息的挖掘,以金字塔方差池化模块为核心构建了一个生成网络.首先,该网络利用不同级别的方差池化挖掘低分辨率图像蕴含的特征信息,并结合金字塔结构获取不同尺度与不同子区域的上下文信息,从而进一步丰富特征信息量;然后,利用密集连接结构增强特征信息之间的关联性,以提高网络的表达能力;最后,引入组归一化操作来加强网络的收敛性.实验结果表明,该模型与其他方法在Set5、Set14、DIV2K100公开测试集上进行比较,在放大倍数因子为4时,峰值信噪比平均提高了0.509 dB,结构相似性平均提高了0.016.所提模型不仅在峰值信噪比和结构相似性上有一定的提高,其重建图像在视觉效果上也拥有更多的真实细节.
To reduce the impact of high-frequency information loss on image reconstruction and further enhance the mining of feature information,a generation network is constructed with the pyramid variance pooling module as the core.Firstly,the network uses different levels of variance pooling to mine the feature information contained in low-resolution images,and combines the pyramid structure to obtain the context information of different scales and different sub-regions,so as to further enrich the amount of feature information.Then,the dense connection structure is used to enhance the correlation of feature information to improve the expressive ability of the network.Finally,the group normalization operation is introduced to strengthen the convergence of the network.The experimental results show that compared with other methods on the open test sets of Set5,Set14,and DIV2K100,the peak signal-to-noise ratio increases by an average of 0.509 dB and the structural similarity increases by an average of 0.016 when the amplification factor is 4.The proposed model not only improves the peak signal-to-noise ratio and structural similarity to a certain extent,but also has more realistic details in the visual effect of the reconstructed image.
彭晏飞;李泳欣;孟欣;崔芸
辽宁工程技术大学 电子与信息工程学院,辽宁 葫芦岛 125105
计算机与自动化
图像超分辨率生成对抗网络方差池化密集连接
image super-resolutiongenerative adversarial networkvariance poolingdense connection
《液晶与显示》 2024 (010)
1380-1390 / 11
国家自然科学基金(No.61772249)Supported by National Natural Science Foundation of China(No.61772249)
评论