基于GAN的地震人员死亡样本扩充方法研究OA北大核心CSTPCD
Research on GAN-based Sample Expansion Method for Earthquake Personnel Deaths
地震是一种破坏性巨大且严重威胁社会经济发展的自然灾害.震后快速准确评估死亡人员对地震应急响应具有重要意义.由于历史震例数量有限,地震人员死亡评估模型的稳定性难以保证.该文采用GAN对历史地震样本进行扩充,得到一个与原始数据集高度相似的增强数据集.为验证增强数据集的可靠性,对使用不同数据集为样本的经验模型和机器学习模型进行研究.研究结果表明:增强数据集不仅对经验模型拟合效果有所增强,对机器学习模型的预测性能也有显著提升,样本量扩充后相比于扩充前,各模型预测结果的均方根误差平均降低了48.37%.因此,该文研究方案扩充得到的增强数据集可以作为原始样本的有效补充,是一种有效提高地震人员死亡模型精度的途径.
Earthquake is a natural disaster with great destructiveness,which seriously threatens the social and eco-nomic development.Accurate prediction of the number of deaths at the first time after an earthquake is of great significance for disaster relief and emergency response.However,due to the limited number of historical earthquake samples,it is diffi-cult to ensure the stability of small sample models.In this paper,GAN is used to expand the samples to obtain an augment-ed dataset that is highly similar to the original dataset.The empirical model is then fitted using the two datasets,and the training and prediction performance of the machine learning models(SVR,ELM,BP,DNN)are also compared.The re-sults show that the augmented dataset not only enhances the fitting effect of the empirical models,but also has a significant effect on the prediction performance of the machine learning models,and the root-mean-square error between the predicted and true values of each model is reduced by an average of 48.37%after the sample size expansion compared to the pre-expansion period.Therefore,the augmented dataset obtained by GAN expansion can be used as an effective supplement to the original samples,and is an effective way to improve the accuracy of the earthquake personnel death model.
赵煜;李娅妮;孙艳萍;史一彤;陈文凯
兰州财经大学 统计与数据科学学院,甘肃 兰州 730020||甘肃经济发展数量分析研究中心,甘肃 兰州 730020中国地震局兰州地震研究所,甘肃 兰州 730020
环境科学
地震人员死亡生成对抗网络小样本样本扩充机器学习
earthquake fatalitiesgenerative adversarial networkssmall samplessample expansionmachine learning
《灾害学》 2024 (004)
40-46 / 7
国家社科基金西部项目"生态安全视阈内黄河上游城市群韧性测度及优化路径研究"(21XTJ004);兰州财经大学重点项目"兰州—西宁城市群高质量协同发展机制、测度与提升路径研究"(Lzufe2022B-005)
评论