|国家科技期刊平台
首页|期刊导航|长江大学学报(自然科学版)|电成像测井中基于GA-RF的火山岩岩性识别

电成像测井中基于GA-RF的火山岩岩性识别OA

GA-RF-based lithologic identification of volcanic rocks in electrical imaging logging

中文摘要英文摘要

针对利用常规测井资料难以准确识别复杂火山岩岩性的问题,提出了一种基于GA-RF(遗传算法-随机森林)的利用电成像测井进行火山岩岩性识别的方法.首先,采用灰度共生矩阵(GLCM)方法提取电成像测井图像的能量、对比度、相关性、同质性等4个图像纹理特征,采用Tamura算法提取图像的粗糙度、对比度、方向度等3个图像纹理特征,并建立图像纹理特征数据集;然后,对数据集进行特征融合、降维,并利用ADASYN过采样算法平衡样本集,降低样本集不均衡对算法的影响;最后,通过遗传算法优化随机森林算法的参数,构建基于GA-RF的火山岩岩性识别模型(以下简称GA-RF模型),并与随机森林、GBDT、LightGBM等三种模型进行比较.实例分析结果表明,GA-RF模型岩性识别准确率可达94%左右,准确率高于3种对比算法.该方法有效地提高了火山岩岩性识别的精度和速度,可为样本不平衡问题以及测井方法识别岩性提供借鉴.

Aiming at the problem that it is difficult to accurately identify the lithology of complex volcanic rocks using conventional logging data,this paper proposes a GA-RF(genetic algorithm-random forest)based method for volcanic rock lithology identification using electric imaging logging.Firstly,the four texture features of energy,contrast,correlation and homogeneity of the electric imaging logging image are extracted by grey level co-occurrence matrix(GLCM)method,and the three texture features of roughness,contrast and orientation of the image are extracted by the Tamura method,and the texture feature dataset is established;then,the feature dataset is subjected to feature fusion,dimensionality reduction,and the feature samples are balanced by the ADASYN over-sampling algorithm,which reduces the impact of sample imbalance on the algorithm.imbalance on the algorithm;finally,the parameters of Random Forest algorithm are optimized by genetic algorithm to construction of volcanic rock Lithology identification model based on GA-RF(hereinafter referred to as GA-RF model)and compare it with the three algorithms of Random Forest,GBDT and LightGBM.The results of instance analysis show that the accuracy of GA-RF model can reach about 94%,which is much higher than the three comparison algorithms.The method effectively improves the accuracy and speed of volcanic rock lithology recognition,which can provide a reference for the sample imbalance problem as well as the lithology recognition by logging methods.

张翔;曾鑫;肖小玲

油气资源与勘探技术教育部重点实验室(长江大学),湖北武汉 430100||长江大学地球物理与石油资源学院,湖北武汉 430100长江大学计算机科学学院,湖北荆州 434020

石油、天然气工程

电成像测井火山岩灰度共生矩阵岩性识别

electrical imaging loggingvolcanic rockgrayscale symbiosis matrixlithology identification

《长江大学学报(自然科学版)》 2024 (005)

47-55 / 9

国家自然科学基金项目"复杂地质背景下电成像测井层理面检测与产状快速提取方法研究"(41374148).

评论