| 注册
首页|期刊导航|长沙理工大学学报(自然科学版)|氢环境下金属材料的疲劳寿命预测:从裂纹的角度

氢环境下金属材料的疲劳寿命预测:从裂纹的角度

聂鹏 杨世源 郭永强 王永金 潘立栋 张家铭 孟德彪

长沙理工大学学报(自然科学版)2024,Vol.21Issue(4):44-67,24.
长沙理工大学学报(自然科学版)2024,Vol.21Issue(4):44-67,24.DOI:10.19951/j.cnki.1672-9331.20231225002

氢环境下金属材料的疲劳寿命预测:从裂纹的角度

Fatigue life prediction of metal materials in hydrogen environment based on cracks

聂鹏 1杨世源 2郭永强 3王永金 4潘立栋 3张家铭 3孟德彪2

作者信息

  • 1. 电子科技大学机械与电气工程学院,四川成都 611731
  • 2. 电子科技大学机械与电气工程学院,四川成都 611731||电子科技大学广东电子信息工程研究院,广东东莞 523808
  • 3. 中国机械总院集团北京机电研究所有限公司,北京 100089
  • 4. 北京科技大学材料科学与工程学院,北京 100083
  • 折叠

摘要

Abstract

With the rapid development of hydrogen energy technology,metal equipment is increasingly used in hydrogen environments.However,the hydrogen embrittlement effect will significantly weaken the fatigue performance of metal materials,posing hidden dangers to the safety of related equipment.Therefore,it is of great significance to accurately predict the fatigue life of metal materials in a hydrogen environment.This paper systematically analyzed the fatigue crack growth behavior of metal materials in a hydrogen environment and summarized the effects of various parameters on the fatigue crack growth rate under the hydrogen embrittlement effect.At the same time,the research on fatigue properties of metal materials in a hydrogen environment and the application of fatigue life prediction methods were investigated.The fatigue crack growth rate of metal materials in hydrogen environment can be used as an input to calculate the fatigue life of materials,but research has found that the fatigue crack growth rate is affected by a variety of parameters.Although the method based on fracture mechanics is commonly used in the fatigue crack growth stage and serves as a commonly used theory for fatigue life prediction in a hydrogen environment,its solution efficiency needs to be improved.With its efficient and accurate prediction performance,machine learning is widely used in the life prediction of various fatigue problems.However,it is still less applied in the field of fatigue life prediction of metal materials in a hydrogen environment.If relevant data enhancement methods can be used to expand fatigue life data in hydrogen environments,machine learning-based methods can be used for life prediction,which may significantly improve the efficiency of fatigue life prediction of metal materials in hydrogen environments.

关键词

氢环境/疲劳性能/裂纹扩展/寿命预测/机器学习

Key words

hydrogen environment/fatigue performance/crack growth/life prediction/machine learning

分类

交通工程

引用本文复制引用

聂鹏,杨世源,郭永强,王永金,潘立栋,张家铭,孟德彪..氢环境下金属材料的疲劳寿命预测:从裂纹的角度[J].长沙理工大学学报(自然科学版),2024,21(4):44-67,24.

基金项目

广东省基础与应用基础研究基金资助项目(2022A1515240010) (2022A1515240010)

中央高校基本科研业务费专项资金资助项目(FRF-EYIT-23-08) Project(2022A1515240010)supported by the Guangdong Basic and Applied Basic Research Foundation (FRF-EYIT-23-08)

Project(FRF-EYIT-23-08)supported by Fundamental Research Funds for the Central Universities (FRF-EYIT-23-08)

长沙理工大学学报(自然科学版)

1672-9331

访问量0
|
下载量0
段落导航相关论文