基于深度学习的理论线损率计算方法研究OA北大核心CSTPCD
Study on the theoretical line loss rate calculation method based on deep learning
线损率是综合反映电网规划、生产、管理等的重要经济技术指标,针对目前计算方法存在的计算速度慢和误差大等问题,提出了一种结合深层置信网络和深层神经网络的理论线损率计算模型.将计算过程转化为多特征提取过程,模型通过逐层贪婪法和随机小批量梯度下降法等进行训练.通过算例与传统模型进行对比分析.结果表明,与传统的线损率计算方法相比,所提方法无论是精度还是效率都有一定的提升,表明了所提方法的优越性,具有一定的实用价值.
Line loss rate is an important economic and technical index comprehensively reflecting power grid plan-ning,production and management,aiming at the problems of slow calculation speed and large error in current cal-culation methods,a theoretical line loss rate calculation model combining deep confidence network and deep neural network is proposed.The calculation process is transformed into a multi-feature extraction process,and the model is trained by layer-by-layer greedy method and random small batch gradient descent method.Comparative analysis is conducted through calculation examples and traditional models.The results show that the accuracy and efficiency of the proposed method are improved compared with the traditional line loss rate calculation method,which shows the superiority of the proposed method and has certain practical value.
尚云飞;姜明军;张东平;赵旻昱
国网甘肃省电力公司,兰州 730030
动力与电气工程
线损率深度置信网络深层神经网络逐层贪婪法随机小批量梯度下降法
line loss ratedeep confidence networkdeep neural networklayer-by-layer greedy methodrandom small batch gradient descent method
《电测与仪表》 2024 (010)
33-38,81 / 7
国家电网有限公司科技项目(GSK001278)
评论