基于多维信息融合的电力变压器故障诊断方法研究OA北大核心CSTPCD
Research on fault diagnosis method of power transformer based on multi-dimensional information fusion
考虑到现有变压器故障诊断方法仅针对单一故障特征,难以对电力变压器的实际情况做出准确、全面的判断.在电力变压器多维信息融合的基础上,提出了一种改进极限学习机和改进D-S证据理论相结合的故障诊断方法.通过后验概率映射优化极限学习机的输出,得到不同标签的概率,使用改进的证据理论来融合概率分配矩阵.通过试验对诊断方法优化前后进行对比分析,验证了该方法的优越性.结果表明,与优化前的故障诊断方法相比,该方法具有更高的故障识别准确率,准确率达到96.50%,能准确识别出电力变压器的各种故障,可为状态检修提供决策依据.
Considering that the existing transformer fault diagnosis methods are only for a single fault feature,it is difficult to make an accurate and comprehensive judgment on the actual situation of the power transformer.On the basis of multi-dimensional information fusion of power transformer,a fault diagnosis method combining the improved extreme learning machine and the improved D-S evidence theory is proposed.The output of the limit learning ma-chine is optimized by a posteriori probability mapping,and the probabilities of different labels are obtained,and the improved evidence theory is used to fuse the probability distribution matrix.The superiority of this method is veri-fied by comparing and analyzing the diagnosis methods before and after optimization.This method has higher fault i-dentification accuracy,and the accuracy rate reaches 96.50%,and can accurately identify various faults of power transformers,which can provide decision-making basis for condition maintenance.
代泽荟;经权;孟颖;黄磊;韩峰;郑大鹏
内蒙古电力(集团)有限责任公司鄂尔多斯电业局,内蒙古鄂尔多斯 017010内蒙古电力(集团)有限责任公司,呼和浩特 010000
动力与电气工程
多维信息融合电力变压器故障特征极限学习机D-S证据理论
multi-dimensional information fusionpower transformerfault characteristicsextreme learning ma-chineD-S evidence theory
《电测与仪表》 2024 (010)
67-73 / 7
国家重点研发计划资助(2017YFC0804101);内蒙古电力(集团)有限责任公司科技项目(2021-14)
评论