|国家科技期刊平台
首页|期刊导航|影像科学与光化学|基于机器学习的超声影像及SWE预测模型在早期慢性肾病中的应用

基于机器学习的超声影像及SWE预测模型在早期慢性肾病中的应用OACSTPCD

Machine Learning-based Prediction Model with Ultrasound Imaging and SWE in the Diagnosis of Early Chronic Kidney Disease

中文摘要英文摘要

目的:开发并验证一种基于机器学习算法的预测模型,该模型结合超声影像学和剪切波弹性成像(SWE)技术,旨在提高早期慢性肾病(CKD)的诊断准确性.方法:采用前瞻性研究设计,纳入2022年3月至2023年11月期间在广州医科大学附属番禺中心医院就诊的308名研究对象,其中185名为慢性肾病患者(观察组),123名为对照组.对所有研究对象进行双肾彩色多普勒超声检查和SWE定量测量,收集临床资料及实验室指标.根据肾小球滤过率和血清肌酐水平,将患者分为早期CKD组、中晚期CKD组和对照组.利用随机森林机器学习算法分析不同分组的参数,建立早期CKD的预测模型.结果:单因素分析表明,双肾皮质杨氏模量(YM)平均值、双肾实质厚度、右肾主动脉峰值流速及阻力指数(RI)等参数在不同分组间差异具有统计学意义(P<0.05).随机森林模型确定了右肾皮质YM、左肾皮质YM和右肾主动脉RI为评估CKD严重程度的3个关键指标.该模型在CKD分类预测中显示出78.86%的总体准确率,早期CKD组的预测AUC为0.91,灵敏度为75.00%,特异度为85.54%.结论:结合彩色多普勒超声和SWE技术的机器学习模型在评估慢性肾病严重程度方面表现出良好的性能.该模型在早期CKD的预测中具有较高的准确性,提供了一种无创、高效的早期诊断方法.

Objective:To develop and validate a predictive model based on machine learning algorithms,which combines ultrasound imaging and shear wave elastography(SWE)technology,aiming to improve the diagnostic accuracy of early chronic kidney disease(CKD).Methods:This study adopts a prospective research design and includes 308 research subjects who sought medical treatment at the Affiliated Panyu Central Hospital of Guangzhou Medical University from March 2022 to November 2023.Among them,185 were chronic kidney disease patients(observation group)and 123 were control group.All research subjects underwent bilateral renal color Doppler ultrasound examination and SWE quantitative measurement,and clinical data and laboratory indicators were collected.Based on glomerular filtration rate and serum creatinine levels,patients were divided into early-stage CKD group,mid-to-late-stage CKD group,and control group.The random forest machine learning algorithm was used to analyze the parameters of different groups and establish a predictive model for early-stage CKD.Results:Single-factor analysis showed that there were statistically significant differences in parameters such as the average value of bilateral renal cortex Young modulus(YM),bilateral renal parenchymal thickness,peak systolic velocity of the right renal artery,and resistance index among different groups(P<0.05).The random forest model identified right renal cortex YM,left renal cortex YM,and right renal artery resistance index as three key indicators for assessing the severity of CKD.The model exhibited an overall accuracy of 78.86%in CKD classification prediction,with an AUC of 0.91,sensitivity of 75.00%,and specificity of 85.54%for the early CKD group.Conclusion:The machine learning model combining color Doppler ultrasound and SWE technology performs well in assessing the severity of chronic kidney disease.The model has high accuracy in predicting early CKD,providing a non-invasive and efficient method for early diag-nosis.

程远;陈毓菁

广州医科大学附属番禺中心医院超声科,广东广州 511400

临床医学

机器学习超声影像剪切波弹性成像早期慢性肾病

machine learningultrasound imageshear wave elastography(SWE)early stagechronic kidney disease

《影像科学与光化学》 2024 (005)

421-428 / 8

广州市卫生健康科技一般引导项目(20231A010082);广东省科技计划项目(20130319c)

10.7517/issn.1674-0475.2024.05.03

评论