|国家科技期刊平台
首页|期刊导航|光通信研究|用于光交换的硅基二氧化硅AWGR的设计与研究(特邀)

用于光交换的硅基二氧化硅AWGR的设计与研究(特邀)OA北大核心CSTPCD

Design and Research of Silicon-based Silica AWGR for Optical Switching

中文摘要英文摘要

[目的]以N×N矩阵形式构成的阵列波导光栅路由器(AWGR)具有光学并行和波长路由能力,能在不同信道上同时传输N路信号,具有扩展性好、延时低和频带宽等优势,结合可调谐光源能实现快速光交换,是下一代光交换数据中心网络的潜在技术方案之一.为了解决现有 AWGR在实际应用中存在的串扰大、有额外耦合损耗、偏振敏感和损耗非均匀性大等问题,进一步扩大数据中心规模和提升数据交换速度,文章分别对 4×4 和 12×12 通道的 AWGR进行了研究.[方法]文章通过仿真软件进行基本设计参数的计算,分析研究了 AWGR设计流程,并采用光束传播法(BPM)进行了仿真模拟.同时,采用在平板波导和条形波导连接处加入锥形波导 taper结构和增大输入、输出波导间距等方法进行了性能优化.[结果]仿真结果得到良好的性能参数:4×4 AWGR插入损耗为-0.714 dB,串扰为-35.556 dB,损耗非均匀性为 1.907 dB;12×12 AWGR 插入损耗为-0.294 dB,串扰为-36.019 dB,损耗非均匀性为 3.428 dB.文章制作设计器件流片并进行了性能测试,结果表明:4×4 AWGR插入损耗为-2.586 dB,串扰为-29.473 dB,损耗非均匀性为 1.921 dB;12×12 AWGR插入损耗为-3.692 dB,串扰为-23.874 dB,损耗非均匀性为 3.873 dB.[结论]文章的研究在串扰和损耗非均匀性等方面进行了性能优化,为后续设计迭代和进一步提升性能参数积累了经验.

[Objective]The Array Waveguide Grating Router(AWGR)constructed in the form of an N×N matrix has optical parallelism and wavelength routing capabilities.It can simultaneously transmit N signals on different channels,and has advan-tages of good scalability,low latency,and wide bandwidth.Combined with tunable harmonic light sources,it can achieve fast optical switching,which is one of the potential technical solutions for the next generation of optical switching data center net-works.In order to solve the problems of high crosstalk,additional coupling loss,polarization sensitivity,and non-uniformity of existing AWGR that may affect practical applications,this paper studied AWGR with 4×4 channels and 12×12 channels re-spectively to further expand the scale of data centers and improve the data exchange speed.[Methods]The basic design parame-ters were calculated using simulation software,and the AWGR design process was analyzed and studied.The Beam Propaga-tion Method(BPM)was used for simulation.At the same time,performance optimization is carried out by adding a conical waveguide tap structure at the connection between the flat waveguide and the strip waveguide,increasing the spacing between the input and output waveguides.[Results]The simulation results show good performance parameters:4×4 AWGR insertion loss of-0.714 dB,crosstalk of-35.556 dB,loss non-uniformity of 1.907 dB;12×12 AWGR insertion loss of-0.294 dB,crosstalk of-36.019 dB,loss non-uniformity of 3.428 dB.The designed device chips are then fabricated and tested on the op-tical platform.The test results indicate:4×4 AWGR insertion loss of-2.586 dB,crosstalk of-29.473 dB,loss non-uni-formity of 1.921 dB;12×12 AWGR insertion loss of-3.692 dB,crosstalk of-23.874 dB,loss non-uniformity of 3.873 dB.[Conclusion]This article investigates the performance optimization in areas such as crosstalk and non-uniformity of losses,ac-cumulating experience for subsequent design iterations and further improving the performance parameters.

李奕璇;钱灏泽;张世成;薛旭伟;郭秉礼;黄善国

北京邮电大学 信息光子学与光通信全国重点实验室,北京 100876

电子信息工程

波分复用光交换阵列波导光栅路由器复用器/解复用器

wavelength division multiplexingoptical exchangeAWGRmultiplexer/demultiplexer

《光通信研究》 2024 (005)

19-24 / 6

国家自然科学基金资助项目(61821001,62101065,62220106002,62125103,62171059)

10.13756/j.gtxyj.2024.240035

评论