高能量代谢肺癌患者临床特征分析及其预测模型建立OA北大核心CSTPCD
Clinical characterization and prediction modeling of lung cancer patients with high energy metabolism
目的 分析肺癌患者高能量代谢的临床特征及其与人体成分、营养状况、生活质量的相关性,并建立高能量代谢风险预测模型.方法 回顾性选取2022年1月-2023年5月山西医科大学第一医院收治的132例原发性肺癌患者,根据是否出现高能量代谢分为高能量代谢组(n=94)和非高能量代谢组(n=38).比较两组临床资料、人体成分、患者主观整体营养状况评估量表(PG-SGA)评分、EORTC生命质量测定量表(QLQ-C30)评分的差异.采用logistic回归分析肺癌患者高能量代谢的危险因素,并据此建立风险预测模型;采用Hosmer-Lemeshow检验评估模型拟合度,采用受试者工作特征(ROC)曲线下面积(AUC)检测其预测效能.结果 132例原发性肺癌中,94例(71.2%)出现高能量代谢.与低能量代谢组比较,高能量代谢组患者吸烟指数≥400、疾病分期为Ⅲ或Ⅳ期、IL-6水平、低脂肪指数、低骨骼肌指数、营养不良风险均增高(P<0.05),总蛋白、白蛋白、血红蛋白水平及预后营养指数(PNI)降低(P<0.05);两组患者年龄、性别、身高、体重、BMI及疾病分型差异无统计学意义(P>0.05).Logistic回归分析结果显示,吸烟指数≥400、疾病分期为晚期、IL-6≥3.775 ng/L、PNI<46.43为肺癌患者高能量代谢的独立危险因素;据此建立的预测模型预测肺癌患者高能量代谢风险ROC曲线的AUC为0.834(95%CI 0.763~0.904).结论 本研究建立的肺癌患者高能量代谢风险预测模型具有较好的拟合度和预测效能.
Objective To analyze the clinical characteristics of high energy metabolism in lung cancer patients and its correlation with body composition,nutritional status,and quality of life,and to develop a corresponding risk prediction model.Methods Retrospectively analyzed 132 primary lung cancer patients admitted to the First Hospital of Shanxi Medical University from January 2022 to May 2023,and categorized into high(n=94)and low energy metabolism group(n=38)based on their metabolic status.Differences in clinical data,body composition,Patient Generated Subjective Global Assessment(PG-SGA)scores,and European Organization for Research and treatment of Cancer(EORTC)Quality of Life Questionnaire-Core 30(QLQ-C30)scores were compared between the two groups.Logistic regression was used to identify the risk factors for high energy metabolism in lung cancer patients,and a risk prediction model was established accordingly;the Hosmer-Lemeshow test was used to assess the model fit,and the ROC curve was used to test the predictive efficacy of the model.Results Of the 132 patients with primary lung cancer,94(71.2%)exhibited high energy metabolism.Compared with low energy metabolism group,patients in high-energy metabolism group had a smoking index of 400 or higher,advanced disease staging of stage Ⅲ or Ⅳ,and higher levels of IL-6 level,low adiposity index,low skeletal muscle index,and malnutrition(P<0.05),and lower levels of total protein,albumin,hemoglobin level,and prognostic nutritional index(PNI)(P<0.05).There was no significant difference in age,gender,height,weight,BMI and disease type between the two groups(P>0.05).Logistic regression analysis showed that smoking index≥400,advanced disease stage,IL-6≥3.775 ng/L,and PNI<46.43 were independent risk factors for high energy metabolism in lung cancer patients.The AUC of the ROC curve for the established prediction model of high energy metabolism in lung cancer patients was 0.834(95%CI 0.763-0.904).Conclusion The high energy metabolic risk prediction model of lung cancer patients established in this study has good fit and prediction efficiency.
任江珊;王康;仇海乐;刘宸安;樊羽羽;于德刚;贾军梅;孙萍;平梅;张琼琼;刘燕燕;赵和平;陈妍;戎冬文
山西医科大学第一临床医学院,山西太原 030001山西医科大学第一医院肿瘤科,山西太原 030001首都医科大学附属北京世纪坛医院胃肠外科与临床营养科,北京 100038山西医科大学第一医院营养科,山西太原 030001
临床医学
肺癌高能量代谢预测模型人体成分生活质量
lung cancerhigh energy metabolismrisk prediction modelbody compositionquality of life
《解放军医学杂志》 2024 (009)
1004-1010 / 7
This work was supported by the Clinical Research Special Program of Wu Jieping Medical Foundation(320.6750.2022-17-27) 吴阶平医学基金会临床科研专项资助基金(320.6750.2022-17-27)
评论