| 注册
首页|期刊导航|计算机应用研究|基于主动学习的深度半监督聚类模型

基于主动学习的深度半监督聚类模型

付艳艳 黄瑞章 薛菁菁 任丽娜 陈艳平 林川

计算机应用研究2024,Vol.41Issue(10):2955-2961,7.
计算机应用研究2024,Vol.41Issue(10):2955-2961,7.DOI:10.19734/j.issn.1001-3695.2024.01.0025

基于主动学习的深度半监督聚类模型

Deep active semi-supervised clustering model

付艳艳 1黄瑞章 1薛菁菁 1任丽娜 1陈艳平 1林川1

作者信息

  • 1. 贵州大学文本计算与认知智能教育部工程研究中心,贵阳 550025||贵州大学公共大数据国家重点实验室,贵阳 550025||贵州大学计算机科学与技术学院,贵阳 550025
  • 折叠

摘要

Abstract

Deep semi-supervised clustering aims to achieve better clustering results using a small amount of supervised infor-mation.However,the amount of supervised information is often limited due to the expensive labelling cost.Therefore,with limited supervised information,it becomes crucial to select the most valuable supervisory information for clustering.To address the above problem,this paper proposed a deep active semi-supervised clustering model(DASCM)which designed an active learning method that was able to select marginal texts containing rich information and further generated high-value supervised information containing edge texts.The model used this supervised information to guide the clustering,thus improving the clus-tering performance.The experimental results on five real text datasets show that the clustering performance of DASCM is signi-ficantly improved.This result verifies that supervised information generated using active learning methods that cover marginal text is effective in improving clustering.

关键词

深度半监督聚类/主动学习/边缘文本

Key words

deep semi-supervised clustering/active learning/marginal text

分类

计算机与自动化

引用本文复制引用

付艳艳,黄瑞章,薛菁菁,任丽娜,陈艳平,林川..基于主动学习的深度半监督聚类模型[J].计算机应用研究,2024,41(10):2955-2961,7.

基金项目

国家自然科学基金资助项目(62066007) (62066007)

贵州省科技支撑计划资助项目(黔科合支撑[2022]一般277) (黔科合支撑[2022]一般277)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量8
|
下载量0
段落导航相关论文