| 注册
首页|期刊导航|计算机应用研究|基于分区个体排名的非线性种群缩减的人工蜂群算法

基于分区个体排名的非线性种群缩减的人工蜂群算法

赵明 刘善智 宋晓宇 沈晓鹏

计算机应用研究2024,Vol.41Issue(10):3021-3031,11.
计算机应用研究2024,Vol.41Issue(10):3021-3031,11.DOI:10.19734/j.issn.1001-3695.2024.02.0045

基于分区个体排名的非线性种群缩减的人工蜂群算法

Artificial bee colony algorithm with unlinear population size reduction based on cluster individual rank

赵明 1刘善智 1宋晓宇 1沈晓鹏1

作者信息

  • 1. 沈阳建筑大学计算机科学与工程学院,沈阳 110168
  • 折叠

摘要

Abstract

Aiming at the problem that ABC has strong exploration but weak exploitation,which leads to slow convergence speed,this paper proposed an unlinear population size reduction strategy based on cluster individual rank(UPSR-CIR).First-ly,the strategy designed the long-tail unlinear population size reduction function which maintained a large population to explore fully in the early stage,and reduced the population size rapidly in the middle stage,so as to maintain a small population to strengthen exploitation in the late stage,while allocating relatively more computing resources for the late stage to accelerate con-vergence.Secondly,to ensure the diversity of the population,it used K-means clustering dynamically to divide the population into clusters every a certain number of generations,and carried out the population size reduction in the unit of cluster.At the same time,when the population size reducing in the unit of cluster,it determined the number of individuals deleted according to the rank of the best individual in the cluster,so as to reserve relatively more computing resources for the potential cluster with higher rank to further strengthen exploitation.This paper used 22 benchmark test functions to compare and analyze the UPSR-CIR on ABC and its variants.The results show that the UPSR-CIR exhibits higher solution accuracy,stability and convergence speed.It is also universally applicable to ABC variants.Finally,this paper also used 12 classical TSP cases to validate the prac-ticality and superiority of the UPSR-CIR strategy on real application problem.

关键词

非线性种群缩减/人工蜂群算法/聚类/排名/旅行商问题

Key words

unlinear population size reduction/artificial bee colony algorithm/clustering/rank/traveling salesman problem

分类

信息技术与安全科学

引用本文复制引用

赵明,刘善智,宋晓宇,沈晓鹏..基于分区个体排名的非线性种群缩减的人工蜂群算法[J].计算机应用研究,2024,41(10):3021-3031,11.

基金项目

国家自然科学基金资助项目(62073227) (62073227)

辽宁省教育厅科研资助项目(LJK-MZ20220916,LJ212410153034) (LJK-MZ20220916,LJ212410153034)

辽宁省科技厅科研资助项目(2023-MS-222) (2023-MS-222)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文