| 注册
首页|期刊导航|计算机应用研究|强化学习下浅充浅放充电策略AGV调度研究

强化学习下浅充浅放充电策略AGV调度研究

赵锐 梁承姬

计算机应用研究2024,Vol.41Issue(10):3038-3043,6.
计算机应用研究2024,Vol.41Issue(10):3038-3043,6.DOI:10.19734/j.issn.1001-3695.2024.03.0057

强化学习下浅充浅放充电策略AGV调度研究

Research on AGV scheduling of shallow charging and shallow discharging charging strategy under reinforcement learning

赵锐 1梁承姬1

作者信息

  • 1. 上海海事大学物流科学与工程研究院,上海 201306
  • 折叠

摘要

Abstract

For charging problem in AGV scheduling in automated container terminals,this paper constructed a mixed integer optimization model considering the shallow charging and shallow discharging charging strategy.The model aimed to minimize the final completion time of the AGV.Under the constraints of considering the change of AGV battery power and the difference in power consumption in different states of the AGV,the model used the AGV idle time and the end time of a work cycle to make up power,reducing the number of AGV charging times,and thus reducing the total completion time.The model was solved by Wolf-PHC reinforcement learning,and the results were compared with GAMS solver,Q-learning algorithm and genetic algo-rithm(GA)respectively to verify the effectiveness of the model and superiority of the algorithm.The example analysis shows that AGV utilization efficiency is higher under the shallow charging and shallow discharging charging strategy,and the combination of Wolf-PHC and GA is better for the model solution.

关键词

自动化集装箱码头/自动导引车/浅充浅放充电策略/强化学习/遗传算法

Key words

automated container terminal/automatic guided vehicle(AGV)/shallow charge and shallow discharge charging strategy/reinforcement learning/genetic algorithm

分类

交通工程

引用本文复制引用

赵锐,梁承姬..强化学习下浅充浅放充电策略AGV调度研究[J].计算机应用研究,2024,41(10):3038-3043,6.

基金项目

国家自然科学基金资助项目(72271125) (72271125)

上海市青年科技英才扬帆计划资助项目(21YF1416400) (21YF1416400)

上海市青年科技启明星计划资助项目(21QB1404800) (21QB1404800)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文