| 注册
首页|期刊导航|计算机应用研究|基于同模型匹配点聚集的图像多匹配模型估计算法

基于同模型匹配点聚集的图像多匹配模型估计算法

王伟杰 魏若岩 朱晓庆

计算机应用研究2024,Vol.41Issue(10):3173-3182,10.
计算机应用研究2024,Vol.41Issue(10):3173-3182,10.DOI:10.19734/j.issn.1001-3695.2023.12.0638

基于同模型匹配点聚集的图像多匹配模型估计算法

Image multi-matching model estimation algorithm based on aggregation of matching points of same model

王伟杰 1魏若岩 1朱晓庆2

作者信息

  • 1. 河北经贸大学管理科学与信息工程学院,石家庄 050061
  • 2. 北京工业大学信息学部,北京 100124
  • 折叠

摘要

Abstract

The estimation of multiple matching models between wide baseline or large angle images is a quite challenging task in image processing.The existing algorithms can be used to estimate multiple matching models and their inliers between images well,but their results are prone to matching pairs mis-classification issues.In order to accurately estimate the multiple matching models and allocate matching pairs,this paper proposed an image multi-matching model estimation algorithm based on the aggregation of matching points of the same model(AMPSM).Firstly,for improve the proportion of correct matching pairs,it filtered out incorrect matching pairs based on the distribution characteristics of correct matching points in the neigh-boring region.Furthermore,based on the different matching model degrees to which the matching pairs belong,searched for the suspected intersection matching pairs of multiple models,that was interference matching pairs.Meantime,for reducing the impact of interference matching pairs on the accuracy of matching classification,they were removed.Afterwards,for improve the clustering degree of matching points with the co-model,the position was dynamically moved based on the distance between the points within the same model and the center of gravity of the point set during the sampling process.Finally,classifying clustered matching points by Mean Shift to obtain a multi matching model.And the proposed method was compared with classi-cal framework based algorithms RANSAC,PROSAC,MAGSAC++,GMS,AdaLAM,PEARL,MTC,Sequential RANSAC,and deep learning based algorithms SuperGlue,OANet,CLCNet,CONSAC,etc.Results indicate over 30%increase in the inlier rate,8.39%reduction in the mis-classification rate of multi model estimation.It is concluded that the new algorithm has significant advantages in incorrect matches filtering and multi-model estimation.

关键词

图像匹配/多模型估计/抽样一致性/聚集

Key words

image matching/multi-model estimation/sample consistency/aggregation

分类

信息技术与安全科学

引用本文复制引用

王伟杰,魏若岩,朱晓庆..基于同模型匹配点聚集的图像多匹配模型估计算法[J].计算机应用研究,2024,41(10):3173-3182,10.

基金项目

国家自然科学基金资助项目(62103009) (62103009)

河北省重点研发计划资助项目(17216108) (17216108)

河北省自然科学基金资助项目(F2018207038) (F2018207038)

河北省高等教育教学改革研究与实践项目(2022GJJG178) (2022GJJG178)

河北省教育厅科研项目(QN2020186) (QN2020186)

河北经贸大学重点研究项目(ZD20230001) (ZD20230001)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文