| 注册
首页|期刊导航|计算机应用研究|多类别形态的未隶定青铜器铭文细粒度识别

多类别形态的未隶定青铜器铭文细粒度识别

刘可欣 王慧琴 王可 王展 王宏

计算机应用研究2024,Vol.41Issue(10):3194-3200,7.
计算机应用研究2024,Vol.41Issue(10):3194-3200,7.DOI:10.19734/j.issn.1001-3695.2023.11.0594

多类别形态的未隶定青铜器铭文细粒度识别

Fine-grained recognition of untranscribed bronze inscriptions based on multi-category morphology

刘可欣 1王慧琴 1王可 1王展 2王宏2

作者信息

  • 1. 西安建筑科技大学信息与控制工程学院,西安 710055
  • 2. 陕西省文物保护研究院,西安 710075
  • 折叠

摘要

Abstract

Fine-grained recognition of untranscribed bronze inscriptions relies on traditional convolutional neural networks.However,this method used overlooks the relationship between localization and feature learning,leading to difficulties in accu-rately representing the complex structures of the text and resulting in recognition errors.This paper proposed a model,named MP-CNN,addressed this issues through a pose-aligned multi-part fine-grained recognition approach.In the first stage,it em-ployed a spatial transformer to guide inscriptions to adopt a consistent glyph posture,aiding the model in accurately locating key text regions.The second stage incorporated constructing a cascaded efficient channel attention(EC A)mechanism to guide the combination of feature channels,locating multiple independent discriminative regions and refining the extraction of morpho-logical features for complex text structures.Finally,in the third stage,it built a feature fusion layer to obtain the recognition results.Experimental results demonstrate that the algorithm achieves recognition accuracies of 97.25%and 97.18%on stan-dard and multi-category morphology datasets,respectively.Compared to the traditional convolutional network ResNet34,the method exhibits improvements of 4.63%and 8.89%on these datasets.The results indicate that the algorithm effectively adapts to the actual morphological variations in inscriptions,achieving fine-grained recognition of untranscribed bronze inscriptions.

关键词

未隶定青铜器铭文/细粒度识别/姿态对齐/ECA注意力机制/特征融合

Key words

untranscribed bronze inscriptions/fine-grained recognition/pose alignment/EC A attention mechanism/feature fusion

分类

信息技术与安全科学

引用本文复制引用

刘可欣,王慧琴,王可,王展,王宏..多类别形态的未隶定青铜器铭文细粒度识别[J].计算机应用研究,2024,41(10):3194-3200,7.

基金项目

陕西省自然科学基础研究计划项目(2021JM-377) (2021JM-377)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文