| 注册
首页|期刊导航|计算机工程与应用|改进YOLOv5的织物缺陷检测方法

改进YOLOv5的织物缺陷检测方法

朱磊 王倩倩 姚丽娜 潘杨 张博

计算机工程与应用2024,Vol.60Issue(20):302-311,10.
计算机工程与应用2024,Vol.60Issue(20):302-311,10.DOI:10.3778/j.issn.1002-8331.2306-0142

改进YOLOv5的织物缺陷检测方法

Fabric Defect Detection Method with Improved YOLOv5

朱磊 1王倩倩 1姚丽娜 1潘杨 1张博1

作者信息

  • 1. 西安工程大学 电子信息学院,西安 710048
  • 折叠

摘要

Abstract

In order to improve the accuracy of deep learning method for fabric defect detection without increasing the amount of network parameters,a fabric defect detection method based on improved YOLOv5 is proposed.Firstly,the channel attention is transformed by depthwise convolution,the maximum pooling of clipping is used to optimize the spa-tial attention,and the feature extraction sub-network is built through the double-cascade attention mechanism constructed by the two,so as to improve the network's ability to extract the texture and semantic features of the defect area.Secondly,the ghost-shuffle convolution is used to improve the feature fusion sub-network to strengthen the screening of extracted features,which reduces the amount of model parameters and improves the problem of defect information loss and invalid information redundancy.Finally,a new loss function SIOU with angular loss is introduced at the detection end to promote the fitting of the real box and the prediction box and improve the accuracy of defect prediction.The results show that the improved YOLOv5 method can reduce the complexity and calculation amount of YOLOv5 benchmark model,and can obtain higher detection accuracy compared with six advanced methods such as YOLOv7,which increases the mAP@0.5 value by 2.6 percentage points and the mAP@0.5:0.9 value by 1.3 percentage points compared with the original model.

关键词

织物缺陷检测/卷积神经网络/YOLOv5/双级联注意力机制/损失函数

Key words

fabric defect detection/convolutional neural networks/YOLOv5/dual cascade attention mechanism/loss function

分类

信息技术与安全科学

引用本文复制引用

朱磊,王倩倩,姚丽娜,潘杨,张博..改进YOLOv5的织物缺陷检测方法[J].计算机工程与应用,2024,60(20):302-311,10.

基金项目

国家自然科学基金(61971339) (61971339)

陕西省重点研发计划(2019GY-113) (2019GY-113)

陕西省自然科学基础研究计划(2019JQ-361). (2019JQ-361)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文