| 注册
首页|期刊导航|计算机工程与应用|RISE-D3QN驱动的多无人机数据采集路径规划

RISE-D3QN驱动的多无人机数据采集路径规划

黄泽丰 李涛

计算机工程与应用2024,Vol.60Issue(20):328-338,11.
计算机工程与应用2024,Vol.60Issue(20):328-338,11.DOI:10.3778/j.issn.1002-8331.2306-0311

RISE-D3QN驱动的多无人机数据采集路径规划

RISE-D3QN-Based Path Planning for Multi-UAV Data Collection

黄泽丰 1李涛1

作者信息

  • 1. 南京信息工程大学 自动化院,南京 210044
  • 折叠

摘要

Abstract

Unmanned aerial vehicles(UAVs)assisted Internet of things(IoT)data collection is an efficient and promising approach.The optimization of resource allocation in path planning is addressed in this paper by refining the energy con-sumption model and considering three metrics:the amount of collected data,time efficiency,and energy efficiency.The problem is formulated as a distributed partially observable Markov decision process(POMDP)and a novel deep reinforce-ment learning algorithm called RISE(Rényi state entropy)-D3QN(dueling double deep Q network)is proposed.It com-bines intrinsic rewards,prioritized experience replay,and soft-max exploration strategy,enabling path planning for UAV swarms while adapting to changes in UAV battery capacity,IoT device locations,data volume,and quantity.Simulation results demonstrate that compared to traditional D3QN and DQN algorithms,the proposed approach significantly increases.the amount of collected data from IoT devices while reducing UAV flight time and energy consumption,all while ensuring UAV safety during flight.

关键词

无人机/路径规划/深度强化学习/多智能体/物联网/数据采集

Key words

unmanned aerial vehicles(UAVs)/path planning/deep reinforcement learning/multi-agent/Internet of things(IoT)/data collection

分类

信息技术与安全科学

引用本文复制引用

黄泽丰,李涛..RISE-D3QN驱动的多无人机数据采集路径规划[J].计算机工程与应用,2024,60(20):328-338,11.

基金项目

国家自然科学基金(62373195) (62373195)

江苏省"333工程"项目(BRA2020067). (BRA2020067)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文