| 注册
首页|期刊导航|计量学报|基于MCMC算法的粗集料粒径分布推断研究

基于MCMC算法的粗集料粒径分布推断研究

童欣 陆艺 李静伟 范伟军

计量学报2024,Vol.45Issue(9):1273-1280,8.
计量学报2024,Vol.45Issue(9):1273-1280,8.DOI:10.3969/j.issn.1000-1158.2024.09.04

基于MCMC算法的粗集料粒径分布推断研究

Coarse Aggregate Particle Size Distribution of Inference Based on MCMC Algorithm Research

童欣 1陆艺 1李静伟 2范伟军1

作者信息

  • 1. 中国计量大学计量测试与仪器学院,浙江杭州 310018
  • 2. 杭州沃镭智能科技股份有限公司,浙江杭州 310018
  • 折叠

摘要

Abstract

Machine vision is used to collect data on the coarse aggregate dropped from the vibrating plate,and a'pseudo-three-dimensional'image of the dynamic aggregate is obtained.Since the image information cannot accurately express the aggregate.Therefore,the idea of Bayesian statistical inference is introduced to infer the particle size distribution of aggregates.The equivalent Feret short diameter is selected as the image feature,but the error between the Feret short diameter and the actual particle size of the aggregate is large when the particle size is large,so the equivalent elliptical short diameter is added as the second feature.In order to obtain accurate posterior distribution and efficient engineering computing capabilities,the Markov-Monte Carlo(MCMC)algorithm is used,thus breaking through the problem of insufficient high-dimensional calculations of traditional Bayesian statistical inference,and thus obtaining the aggregate Posterior distribution of particle size distribution.Experimental results show that the particle size distribution measurement error of this method for qualified aggregates is maintained within±2.5%,and the error for unqualified aggregates is maintained within±3.5%.

关键词

几何量计量/粗集料/粒径分布/视觉跟踪/贝叶斯推断/MCMC算法/级配检测

Key words

geometrial metrology/coarse aggregate/particle size distribution/visual tracking/Bayesian inference/MCMC algorithm/grading test

分类

通用工业技术

引用本文复制引用

童欣,陆艺,李静伟,范伟军..基于MCMC算法的粗集料粒径分布推断研究[J].计量学报,2024,45(9):1273-1280,8.

基金项目

国家自然科学基金(52075511) (52075511)

计量学报

OA北大核心CSTPCD

1000-1158

访问量0
|
下载量0
段落导航相关论文