|国家科技期刊平台
首页|期刊导航|计量学报|基于深层小波网络的电容层析成像图像重建

基于深层小波网络的电容层析成像图像重建OA北大核心CSTPCD

Image Reconstruction of Electrical Capacitance Tomography Based on Deep Wavelet Networks

中文摘要英文摘要

提出了一种基于深层小波网络的电容层析成像(ECT)图像重建算法,采用Landweber算法生成初始重建图像作为网络输入;以U-Net深度卷积神经网络模型为骨干模型,通过在上、下采样层引入小波变换提取不同层次的特征,以及采用跳跃连接方式搭建高频特征传递通道,保留更多的细节信息,充分利用特征图中的全局和局部信息特征.仿真及静态实验结果均表明,基于该算法的图像重建精度更高,仿真及静态实验重建图像的平均相对图像误差分别为0.191 8及0.657 0,平均相关系数分别为0.968 5及0.816 9.

The image reconstruction algorithm of electrical capacitance tomography(ECT)based on deep wavelet network is presented.The Landweber algorithm is used to generate the initial reconstructed image as the input of the network.Taking the U-Net deep convolutional neural network model as the backbone model,the wavelet transform is introduced into the upper and lower sampling layers to extract the features of different levels and the high-frequency feature transfer channel is built through a skip connection to retain more detailed information and make full use of global and local information features in the feature map.Both simulation and experimental results show that the proposed image reconstruction algorithm has higher image reconstruction accuracy.The average relative image errors of simulated and static experimental reconstructed images were 0.191 8 and 0.657 0,respectively,with average correlation coefficients of 0.968 5 and 0.816 9.

张立峰;钱立凤;华回春;刘帅

华北电力大学自动化系,河北保定 071003华北电力大学数理系,河北保定 071003

多相流测量电容层析成像图像重建深度学习小波变换

multiphase flow measurementelectrical capacitance tomographyimage reconstructiondeep learningwavelet transform

《计量学报》 2024 (009)

1353-1359 / 7

国家自然科学基金(61973115)

10.3969/j.issn.1000-1158.2024.09.13

评论