| 注册
首页|期刊导航|计量学报|基于QM-DBSCAN与BiLSTM的风电机组异常工况预警研究

基于QM-DBSCAN与BiLSTM的风电机组异常工况预警研究

马良玉 梁书源 程东炎 耿妍竹 段新会

计量学报2024,Vol.45Issue(9):1384-1393,10.
计量学报2024,Vol.45Issue(9):1384-1393,10.DOI:10.3969/j.issn.1000-1158.2024.09.17

基于QM-DBSCAN与BiLSTM的风电机组异常工况预警研究

Research on Early Warning of Abnormal Working Conditions of Wind Turbine Based on QM-DBSCAN and BiLSTM

马良玉 1梁书源 2程东炎 2耿妍竹 2段新会3

作者信息

  • 1. 华北电力大学自动化系,河北保定 071003||保定市综合能源系统状态检测与优化调控重点实验室,河北保定 071003
  • 2. 华北电力大学自动化系,河北保定 071003
  • 3. 华北电力大学自动化系,河北保定 071003||保定华仿科技股份有限公司,河北保定 071000
  • 折叠

摘要

Abstract

A wind turbine fault warning method based on quartile method(QM)-density-based spatial clustering of applications with noise(DBSCAN)and Bi-directional long and short-term memory network(BiLSTM)is proposed.Firstly,in view of the difficulty of cleaning the power limit point in the wind speed-power diagram,the combination of QM and DBSCAN is proposed to preprocess the modeling operation data.secondly,by analyzing the operation principle of wind turbine and determining the input and output parameters of the normal working condition prediction model of wind turbine combined with LightGBM feature selection method,a high-precision normal performance prediction model of wind turbine is established based on BiLSTM.Then,the state performance index of the fan is determined by the sliding window algorithm,and the index threshold is determined by statistical interval estimation method.Finally,the real fault data of the fan is used to carry out the early warning experiment of the abnormal working condition of the whole wind turbine,which verifies the effectiveness of the method.

关键词

电学计量/风电机组/故障预警/四分位法/DBSCAN/BiLSTM/滑窗算法

Key words

electrical measurement/wind turbine/fault warning/quartile method/DBSCAN/BiLSTM/sliding window algorithm

引用本文复制引用

马良玉,梁书源,程东炎,耿妍竹,段新会..基于QM-DBSCAN与BiLSTM的风电机组异常工况预警研究[J].计量学报,2024,45(9):1384-1393,10.

基金项目

国家自然科学基金(61973117) (61973117)

河北省中央引导地方科技发展资金(226Z2103G) (226Z2103G)

计量学报

OA北大核心CSTPCD

1000-1158

访问量0
|
下载量0
段落导航相关论文