基于Wi-Fi CSI的无监督域自适应伪装步态识别OA
步态识别作为一种非侵入性的人体生物识别技术,因其无须用户主动配合的特点,被广泛应用于安防和智能家居等领域.然而,现实中步态识别系统面临的一个重大挑战是伪装效应.当受试者改变着装或携带物品时,步态数据的可靠性往往受到影响,从而使步态识别变得困难.为解决这一问题,该文提出一种基于Wi-Fi CSI的无监督伪装步态识别方法.该方法引入一种新的数据度量策略,通过预训练来获取伪装步态数据的伪标签,并利用匹配滤波技术生成高质量的标记训练数据对.最终,通过无监督学习实现数据分布对齐,克服伪装步态数据的分布偏移问题.实验结果表明,该文的方法在伪装步态识别方面显著优于现有最先进的步态识别技术.
Gait recognition,as a non-intrusive biometric technology,is widely used in security and smart home applications due to its ability to function without active user cooperation.However,a significant challenge faced by gait recognition systems in practice is the effect of disguise.When subjects alter their clothing or carry objects,the reliability of gait data is often compromised,making gait recognition difficult.To address this issue,this paper proposes a disguise gait recognition method based on Wi-Fi CSI(Channel State Information).The method introduces a novel data metric strategy,using pre-training to obtain pseudo-labels for disguised gait data,and employs matched filtering techniques to generate high-quality labeled training data pairs.Ultimately,it achieves data distribution alignment through unsupervised learning,overcoming the problem of distribution shift in disguised gait data.Experimental results show that the method significantly outperforms existing state-of-the-art gait recognition techniques in disguise scenarios.
梁颖;吴文杰;许鹏飞
西北大学,西安 710127西安工程大学,西安 710600
计算机与自动化
步态识别Wi-Fi CSI伪装无监督数据分布偏移
gait recognitionWi-Fi CSIdisguiseunsuperviseddata distribution shift
《科技创新与应用》 2024 (030)
16-19 / 4
国家自然科学基金(62373300)
评论