| 注册
首页|期刊导航|农机化研究|基于改进YOLOv5的红花目标检测算法研究

基于改进YOLOv5的红花目标检测算法研究

陈金荣 许燕 周建平 王小荣

农机化研究2025,Vol.47Issue(1):26-32,66,8.
农机化研究2025,Vol.47Issue(1):26-32,66,8.DOI:10.13427/j.issn.1003-188X.2025.01.005

基于改进YOLOv5的红花目标检测算法研究

Research on Target Detection Algorithm of Safflower Balls Based on Improved YOLOv5

陈金荣 1许燕 2周建平 2王小荣3

作者信息

  • 1. 新疆大学机械工程学院,乌鲁木齐 830047
  • 2. 新疆大学机械工程学院,乌鲁木齐 830047||新疆维吾尔自治区农牧机器人及智能装备工程研究中心,乌鲁木齐 830047
  • 3. 新疆大学工程训练中心,乌鲁木齐 830047
  • 折叠

摘要

Abstract

In order to realize accurate recognition of safflower by picking robot in agricultural unstructured environment,a safflower target detection algorithm based on improved YOLOv5 was proposed.By embedding CBAM attention mechanism into YOLOv5 network,the expressiveness of small size objects in high-level features is improved.An Alpha-IoU target position loss function is established to improve the gradient disappearance problem existing in the original loss function GIOU,and the prediction rate of blocked red safflower is improved.By adding segmentation detection module into the tar-get detection network.The detection accuracy of small objects with width and height less than the lowest pixel was im-proved,and the improved YOLOv5 algorithm was trained by using the image amplification data set.Then,the YOLOv5 network and Faster R-CNN network before and after the improvement were compared under different safflower varieties,different natural lighting conditions,different weather conditions and different occlusion conditions.The experimental re-sults show that the P value and R value of the improved YOLOv5 algorithm are 90.45%and 0.90 respectively,and the mAP value of the unpicked safflower in the non-structural environment in blooming stage reaches 94.48%.Under differ-ent influencing factors,the algorithm can accurately identify safflower with high confidence,which can provide technical support for the automatic safflower picking robot recognition.

关键词

红花/目标检测/改进YOLOv5/数据增强/非结构环境

Key words

safflower/target detection/improved YOLOv5/data enhancement/non-structural environment

分类

农业工程

引用本文复制引用

陈金荣,许燕,周建平,王小荣..基于改进YOLOv5的红花目标检测算法研究[J].农机化研究,2025,47(1):26-32,66,8.

基金项目

新疆维吾尔自治区创新团队项目(2022D14002) (2022D14002)

新疆农机研发制造推广应用一体化项目(YTHSD2022-05) (YTHSD2022-05)

农机化研究

OA北大核心

1003-188X

访问量0
|
下载量0
段落导航相关论文