| 注册
首页|期刊导航|软件导刊|基于GAN与分离卷积的高解码精度图像隐写

基于GAN与分离卷积的高解码精度图像隐写

林俏伶 刘昌华 刘沛

软件导刊2024,Vol.23Issue(10):179-186,8.
软件导刊2024,Vol.23Issue(10):179-186,8.DOI:10.11907/rjdk.232053

基于GAN与分离卷积的高解码精度图像隐写

High-Decoding Accuracy Image Steganography Based on GAN and Separated Convolution

林俏伶 1刘昌华 1刘沛1

作者信息

  • 1. 武汉轻工大学 数学与计算机学院,湖北 武汉 430023
  • 折叠

摘要

Abstract

The problem of low decoding accuracy and image visual quality,long encoding and decoding time are in existing image steganogra-phy.In view of the above challenges,a high-decoding accuracy image steganography based on GAN and separated convolution is proposed.An Residual-Rep structure-based and Inception-SCS structure-based preprocessing network is used to automatically learn the high-dimen-sional features of the image and use the feature representation in a data-driven way before embedding the secret information,acquiring feature information for both channels and spaces,and the skipping connection is used to reduce the loss of secret information,and reduce model com-plexity by shortening encoding and decoding time.In order to improve the dense decoder's accuracy,the error correction layer,error correc-tion function and Wasserstein distance are introduced.In a typical environment,an average decoding accuracy of 0.89 and an average structur-al similarity of 0.95 are obtained,which improves the decoding accuracy and reduces image distortion.The encoding time is reduced by half compared to both SteganoGAN and Hidden methods,allowing the encoding task to be completed in a shorter time.

关键词

生成式对抗网络/沃瑟斯坦度量/残差连接/分离卷积/纠错层

Key words

generative adversarial network/Wasserstein distance/skipping connection/separation convolution/error correction lay

分类

信息技术与安全科学

引用本文复制引用

林俏伶,刘昌华,刘沛..基于GAN与分离卷积的高解码精度图像隐写[J].软件导刊,2024,23(10):179-186,8.

基金项目

湖北省高等学校省级教学研究项目(2022343) (2022343)

软件导刊

1672-7800

访问量0
|
下载量0
段落导航相关论文