|国家科技期刊平台
首页|期刊导航|数据采集与处理|基于深度学习的说话人确认方法研究现状及展望

基于深度学习的说话人确认方法研究现状及展望OA北大核心CSTPCD

State of the Art and Prospects of Deep Learning-Based Speaker Verification

中文摘要英文摘要

随着深度学习的不断发展,说话人确认(Speaker verification)技术已经取得了长足的进步.该技术相较于其他生物特征识别技术,具有可远程操作、成本低和易于人机交互等优势,在公安刑侦、金融服务等领域展现出广泛的应用前景.本文系统综述了基于深度学习的说话人确认技术的发展脉络.首先,介绍了基于深度学习的说话人特征表示模型在模型输入与结构、池化层、有监督损失函数和自监督学习与预训练模型4个方面的发展历程和研究现状;其次,探讨了说话人确认技术在实际应用中面临的跨域不匹配问题,如噪声干扰、信道不匹配和远场语音等,并概述了相应的领域自适应和领域泛化方法;最后,指出了进一步的研究方向.

With the development of deep learning,speaker verification has made great progress.Compared with other biometric identification technologies,this technology has advantages of remote operation,low cost,easy human-computer interaction,etc.,thus it shows a wide range of application prospects in the fields of public security,criminal investigation,and financial services.A systematic overview of the development lineage of deep learning-based speaker verification techniques is provided.Firstly,the development history and research status of deep learning-based speaker representation model are introduced in four aspects:Model input and structure,pooling layer,supervised loss function,and self-supervised learning and pre-training model.Then,the challenges faced by speaker verification are discussed,such as cross-domain mismatch problems like noise interference,channel mismatch and far-field speech,and the corresponding domain adaptation and domain generalization methods are outlined.Finally,the further research directions are presented.

李建琛;韩纪庆

哈尔滨工业大学计算机科学与技术学院,哈尔滨 150001

电子信息工程

说话人识别说话人确认深度学习领域不匹配自监督学习

speaker recognitionspeaker verificationdeep learningdomain mismatchself-supervised learning

《数据采集与处理》 2024 (005)

1062-1084 / 23

国家自然科学基金(62376071).

10.16337/j.1004-9037.2024.05.003

评论