融合神经网络的卡尔曼滤波啸叫抑制路径突变检测算法OA北大核心CSTPCD
Kalman-Filter-Based Acoustic Feedback Cancellation with State Detection Model for Fast Recovery from Abrupt Path Changes
分区频域卡尔曼滤波(Partitioned block frequency domain Kalman filtering,PBFDKF)因其收敛速度快、稳态误差小的优势被应用在自适应滤波声反馈抑制(Adaptive feedback cancellation,AFC).然而,当声反馈路径发生突变时,卡尔曼滤波会进入锁死状态,难以再次跟踪.本文提出一种融合神经网络的卡尔曼滤波啸叫抑制状态检测算法(Kalman-filter-based AFC with state detection model,KFSD).该系统将卡尔曼滤波声反馈抑制系统的传声器采集信号、残差信号和滤波器更新量作为输入特征,通过神经网络对卡尔曼滤波的状态误差协方差矩阵进行修正,从而实现路径突变情况下的再次跟踪和收敛.仿真实验结果验证了所提算法具有较高的正判率、较低的虚警率和较短的延迟帧数,算法同时具备快速再跟踪性能,提高了声反馈抑制效果.
The partitioned block frequency domain Kalman filter(PBFDKF)has been applied in acoustic feedback cancellation(AFC)due to its fast convergence and low steady-state misalignment.However,the Kalman filter at steady state might encounter the issue of deadlock when the feedback path experiences abrupt changes,exhibiting suboptimal tracking capabilities.In this paper,the Kalman-filter-based AFC with state detection model(KFSD)is proposed to effectively improve the robustness against abrupt path changes.The narrowband energy of the microphone signal,the residual signal and the update of Kalman filter are used as the input to the state detection model.And then,the state detection results are merged into the state estimation error covariance matrix of the Kalman filter,achieving better re-convergence performance against the abrupt path changes.Experimental results demonstrate the superior performance of the proposed KFSD algorithm,showcasing a high true positive rate,a low false alarm rate,and a short state detection latency.These advantages lead to faster re-convergence and enhanced acoustic feedback cancellation..
郭昊诚;陈锴;卢晶
南京大学声学研究所,近代声学教育部重点实验室,南京 210093
计算机与自动化
声反馈抑制自适应滤波卡尔曼滤波状态检测深度神经网络
acoustic feedback cancellationadaptive filteringKalman filteringstate detectiondeep neural network
《数据采集与处理》 2024 (005)
1126-1134 / 9
国家自然科学基金(12274221).
评论