| 注册
首页|期刊导航|数据采集与处理|基于多核扩展卷积的无监督视频行人重识别

基于多核扩展卷积的无监督视频行人重识别

刘仲民 张长凯 胡文瑾

数据采集与处理2024,Vol.39Issue(5):1192-1203,12.
数据采集与处理2024,Vol.39Issue(5):1192-1203,12.DOI:10.16337/j.1004-9037.2024.05.011

基于多核扩展卷积的无监督视频行人重识别

Unsupervised Video Person Re-identification Based on Multiple Kernel Dilated Convolution

刘仲民 1张长凯 1胡文瑾2

作者信息

  • 1. 兰州理工大学电气工程与信息工程学院,兰州 730050||甘肃省工业过程先进控制重点实验室,兰州 730050
  • 2. 西北民族大学数学与计算机科学学院,兰州 730030
  • 折叠

摘要

Abstract

Person re-identification aims to identify specific individuals across surveillance cameras,overcoming challenges such as pose variations,occlusions,and background noise that often lead to insufficient feature extraction.This paper proposes a novel unsupervised video-based person re-identification method that utilizes multi-kernel dilated convolution to provide a more comprehensive and accurate representation of individual differences and features.Initially,we employ a pre-trained ResNet50 as an encoder.To further enhance the encoder's feature extraction capability,we introduce a multiple kernel dilated convolution module.Enlarging the receptive field of convolutional kernels allows the network to more effectively capture both local and global feature information,offering a more comprehensive depiction of a person's appearance features.Subsequently,a decoder is employed to restore high-level semantic information to a more fundamental feature representation,thereby strengthening feature representation and improving system performance under complex imaging conditions.Finally,a multi-scale feature fusion module is introduced in the decoder output to merge features from adjacent layers,reducing semantic gaps between different feature channel layers and generating more robust feature representations.Offline experiments are conducted on three mainstream datasets,and results show that the proposed method achieves significant improvements in both accuracy and robustness.

关键词

行人重识别/多核扩展卷积/无监督学习/特征提取/注意力机制

Key words

person re-identification/multiple kernel dilated convolution/unsupervised learning/feature extraction/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

刘仲民,张长凯,胡文瑾..基于多核扩展卷积的无监督视频行人重识别[J].数据采集与处理,2024,39(5):1192-1203,12.

基金项目

国家自然科学基金(62061042) (62061042)

甘肃省工业过程先进控制重点实验室开放基金项目(2022KX10). (2022KX10)

数据采集与处理

OA北大核心CSTPCD

1004-9037

访问量0
|
下载量0
段落导航相关论文