| 注册
首页|期刊导航|数据采集与处理|基于双向融合纹理和深度信息的目标位姿检测

基于双向融合纹理和深度信息的目标位姿检测

张亚炜 付东翔

数据采集与处理2024,Vol.39Issue(5):1214-1227,14.
数据采集与处理2024,Vol.39Issue(5):1214-1227,14.DOI:10.16337/j.1004-9037.2024.05.013

基于双向融合纹理和深度信息的目标位姿检测

Target Position Detection Based on Bidirectional Fusion of Texture and Depth Information

张亚炜 1付东翔1

作者信息

  • 1. 上海理工大学光电信息与计算机工程学院,上海 200093
  • 折叠

摘要

Abstract

Aiming at the problem of how to obtain accurate positional information of objects in unstructured scenes by depth cameras with limited hardware device resources,a target position detection method based on bidirectional fusion of texture and depth information is proposed.In the learning phase,two networks adopt the full-flow bidirectional fusion(FFB6D)module,the texture information extraction part introduces the lightweight Ghost module to reduce the computation of the network,and adds the attention mechanism CBAM that can enhance useful features,and the depth information extraction part extends the local features and multilevel feature fusion to obtain more comprehensive features.In the output stage,in order to improve the efficiency,the instance semantic segmentation results are utilized to filter background points,then 3D keypoint detection is performed,and finally the position information is obtained by the least square fitting algorithm.Validations are carried out on LINEMOD,Occlusion LINEMOD and YCB-Video public datasets,whose accuracies reach 99.8%,66.3%and 94%,respectively,and the amount of parameters is reduced by 31%,showing that the improved position estimation method can canreduce the number of parameters while guaranteeing the accuracy.

关键词

双向融合/Ghost/注意力机制/深度学习/位姿估计

Key words

bidirectional fusion/Ghost/attention mechanism/deep learning/position estimation

分类

计算机与自动化

引用本文复制引用

张亚炜,付东翔..基于双向融合纹理和深度信息的目标位姿检测[J].数据采集与处理,2024,39(5):1214-1227,14.

基金项目

国家自然科学基金(61703277). (61703277)

数据采集与处理

OA北大核心CSTPCD

1004-9037

访问量0
|
下载量0
段落导航相关论文