数据采集与处理2024,Vol.39Issue(5):1251-1259,9.DOI:10.16337/j.1004-9037.2024.05.016
智能反射面辅助的星地认知网络多播传输鲁棒优化设计
Robust Optimization Design for Multicast Transmission in IRS-Aided Cognitive Satellite and Terrestrial Network
摘要
Abstract
To improve spectrum efficiency,this paper proposes a robust multicast transmission algorithm for intelligent reflecting surface(IRS)aided cognitive satellite and terrestrial network(CSTN).Specifically,the satellite uses multicast technology to serve multiple primary users,while the terrestrial base station(BS),sharing spectrum resources with the satellite network,serves direct users and blocked users through space division multiple access technique and intelligent reflecting surfaces,respectively.Then,a joint optimization problem is formulated to minimize the BS transmit power,while satisfying the outage constraints of both the signal-to-interference-plus-noise ratio of terrestrial users and the interference power of the primary users.To address this nonconvex problem,the nonconvex outage constraint is first transformed into a deterministic form with the assistance of the cumulative distribution function of the exponential distribution.Then,a robust beamforming algorithm combining alternating optimization with semi-positive definite relaxation is proposed to obtain a solution with better performance.Computer simulation results demonstrate the robustness and superiority of the proposed algorithm.关键词
星地认知网络/智能反射面/多播传输/鲁棒波束成形/中断约束Key words
cognitive satellite and terrestrial network(CSTN)/intelligent reflecting surface(IRS)/multicast transmission,robust beamforming/outage constraint分类
信息技术与安全科学引用本文复制引用
马彪,赵柏,季铭仪,丁昌峰,林敏..智能反射面辅助的星地认知网络多播传输鲁棒优化设计[J].数据采集与处理,2024,39(5):1251-1259,9.基金项目
国家自然科学基金(62471255) (62471255)
东南大学移动通信全国重点实验室开放研究基金(2024D11) (2024D11)
江苏省研究生科研与实践创新计划项目(KYCX24_1174) (KYCX24_1174)
南京邮电大学引进人才科研启动基金(NY223024). (NY223024)