| 注册
首页|期刊导航|宁夏大学学报(自然科学版)|一种特征融合的双流深度检测伪造人脸方法

一种特征融合的双流深度检测伪造人脸方法

孟媛 汪西原

宁夏大学学报(自然科学版)2024,Vol.45Issue(3):299-306,8.
宁夏大学学报(自然科学版)2024,Vol.45Issue(3):299-306,8.

一种特征融合的双流深度检测伪造人脸方法

A Feature Fusion Dual-Stream Deepfake Detection Method for Forged Faces

孟媛 1汪西原2

作者信息

  • 1. 宁夏大学 电子与电气工程学院,宁夏 银川 750021
  • 2. 宁夏大学 电子与电气工程学院,宁夏 银川 750021||宁夏沙漠信息智能感知重点实验室,宁夏 银川 750021
  • 折叠

摘要

Abstract

The rapid advancement of Deepfake technology has rendered deepfake video and audio content increasingly realistic,with widespread applications in political forgery,financial fraud,and the dissemination of fake news.Therefore,the research and development of efficient Deepfake detection methods have become cru-cial.This study explores a strategy that combines Vision Transformers(ViT)with Convolutional Neural Net-works(CNN),leveraging the advantages of CNN in local feature extraction and the potential of ViT in model-ing global relationships to enhance the performance of Deepfake detection algorithms in practical applications.Moreover,to strengthen the model's resilience against the impacts of image or video compression,frequency domain features are introduced,and a dual-stream network is employed to extract features,thereby improving detection performance and stability across compressed scenarios.Experimental results indicate that the dual-stream network model based on multi-domain feature fusion demonstrates commendable detection performance on the FaceForensics++dataset,achieving an ACC value of 96.98% and an AUC value of 98.82% .Satis-factory results are also obtained in cross-dataset detection,with an AUC value of 75.41% on the Celeb-DF dataset.

关键词

Deepfake检测/CNN结合ViT/RGB频域特征融合/跨压缩场景

Key words

Deepfake detection/CNN combined with ViT/RGB frequency domain feature fusion/cross-compression scenarios

分类

建筑与水利

引用本文复制引用

孟媛,汪西原..一种特征融合的双流深度检测伪造人脸方法[J].宁夏大学学报(自然科学版),2024,45(3):299-306,8.

基金项目

国家自然科学基金资助项目(42361056) (42361056)

宁夏大学学报(自然科学版)

OACSTPCD

0253-2328

访问量0
|
下载量0
段落导航相关论文