机器学习安全推理研究综述OA
Review of Research on Secure Inference in Machine Learning
[目的]对机器学习安全推理现有的研究工作进行分析,对未来的研究方向进行展望.[方法]以不同方案的安全假设为分类依据,对采用不同的技术组合、应用于不同机器学习场景的安全推理技术进行分析比较.[结果]目前的方案可实现机器学习的安全推理,但在计算效率、安全保护能力、可扩展性以及实际应用场景的适应性方面存在局限.[局限]受限于能够获取到的资料,未能对所分析的方案在同一基准下进行实验及比较.[结论]根据应用场景进行机器学习安全推理的方案设计,在确保安全的前提下提高可用性并降低开销成本,将是该领域的长期发展方向.
[Objective]This paper analyzes existing research on secure machine learning inference and proposes future research directions.[Methods]Using the security assumptions of different schemes as a basis for classification,this study conducts analysis and comparison of secure inference techniques that utilize various technological combinations for application in differ-ent machine learning contexts.[Results]While current schemes facilitate secure machine learning inference,they exhibit limitations in computational efficiency,security,scalability,and practical applicability.[Limitations]Due to limited data availability,experiments and comparisons of the analyzed schemes under the same benchmark were not conducted.[Con-clusions]Designing secure machine learning inference schemes based on application scenari-os,ensuring security while improving usability and reducing costs,will be a sustained devel-opment direction in this field.
龙春;李丽莎;李婧;杨帆;魏金侠;付豫豪
中国科学院计算机网络信息中心,北京 100083中国科学院计算机网络信息中心,北京 100083||中国科学院大学,北京 100190
隐私保护机器学习机器学习数据隐私安全多方计算
privacy-preserving machine learningmachine learningdata privacysecure multi-party computation
《数据与计算发展前沿》 2024 (005)
1-12 / 12
国家重点研发计划(2023YFC3304704);中国科学院网络安全和信息化专项(CAS-WX2022GC-04);中国科学院青年创新促进会项目(2022170)
评论