| 注册
首页|期刊导航|生态学报|基于机器学习与再分析数据集的黄河水源涵养区蒸散发研究

基于机器学习与再分析数据集的黄河水源涵养区蒸散发研究

张江蕾 陈少辉

生态学报2024,Vol.44Issue(18):8314-8325,12.
生态学报2024,Vol.44Issue(18):8314-8325,12.DOI:10.20103/j.stxb.202312312894

基于机器学习与再分析数据集的黄河水源涵养区蒸散发研究

Evapotranspiration in the water source conservation area of the Yellow River Basin based on machine learning and reanalysis dataset

张江蕾 1陈少辉2

作者信息

  • 1. 中国科学院地理科学与资源研究所,陆地水循环及地表过程重点实验室,北京 100101||中国科学院大学资源与环境学院,北京 100049
  • 2. 中国科学院地理科学与资源研究所,陆地水循环及地表过程重点实验室,北京 100101
  • 折叠

摘要

Abstract

Evapotranspiration is a key element of the water cycle,and analyzing its variations helps understand the spatiotemporal distribution patterns of regional water resources.The water source conservation area of the Yellow River Basin is an important ecological function area in the Yellow River Basin.Studying the characteristics of evapotranspiration changes in this area and conducting attribution analysis can help alleviate the water supply-demand contradictions in the Yellow River Basin.Based on machine learning and the ERA5-land reanalysis dataset,this study explored the spatiotemporal variations and influencing factors of evapotranspiration in the Yellow River water source conservation area from 2000 to 2022.The driving factor regression analysis method is used to analyze the influence of different factors in different regions.The results show that:(1)The multi-year average distribution range of evapotranspiration in the Yellow River water source conservation area is 256.49-841.45 mm,with a spatial distribution characteristic of decreasing from east to west and an overall increasing trend.(2)The main influencing factors of evapotranspiration in the Yellow River water source conservation area are surface net solar radiation,total precipitation,and relative humidity.The dominant influencing factors vary in different sub-basins and are related to the hydrothermal conditions and underlying surface conditions in the region.(3)The ERA5-land reanalysis dataset has good simulation accuracy and can serve as a data source for large spatial scale and long-time interval studies.However,due to the complexity of the underlying surface,adaptive assessment within the study area is still needed.

关键词

黄河流域/蒸散发/机器学习/ERA5-land再分析数据集/影响因素

Key words

Yellow River Basin/evapotranspiration/machine learning/ERA5-land reanalysis dataset/influencing factors

引用本文复制引用

张江蕾,陈少辉..基于机器学习与再分析数据集的黄河水源涵养区蒸散发研究[J].生态学报,2024,44(18):8314-8325,12.

基金项目

国家重点研发计划(2021YFC3201102) (2021YFC3201102)

第二次青藏高原综合科学考察研究(2019QZKK1003) (2019QZKK1003)

国家自然科学基金(U2003105) (U2003105)

生态学报

OA北大核心CHSSCDCSTPCD

1000-0933

访问量0
|
下载量0
段落导航相关论文