|国家科技期刊平台
首页|期刊导航|计算机技术与发展|基于改进的YOLOv8轻量级火灾检测算法研究

基于改进的YOLOv8轻量级火灾检测算法研究OACSTPCD

Research on Lightweight Fire Detection Algorithm Based on Improved YOLOv8

中文摘要英文摘要

为提高复杂场景下火灾检测准确度,降低误检、漏检率,提高火灾检测速度,提出一种基于YOLOv8 算法的改进策略.针对YOLOv8 网络结构较深,处理复杂火灾图像或多目标检测时计算复杂度较高的问题,将初始模型的骨干网络替换为MobileViT网络,在保证检测精度的同时构建轻量化火灾检测模型,提升火灾检测速度.在颈部结构嵌入EMA跨空间学习多尺度注意力机制模块增强火灾特征图的语义和空间信息,同时保证通道维度信息的完整,提高火灾检测精度.使用MPDIoU损失函数,解决了YOLOv8 算法检测小尺寸及长边界框火焰目标时的损失函数失效问题.在自建数据集及公开数据集上分别进行实验,实验结果表明:改进后的算法在两数据集上表现均为最优,火灾检测精确率分别达到92.3%和95.9%,对比初始算法精确率最高提升6.3 百分点,平均精度最高提升 9.2 百分点,mAP@0.5 最高提升 8.4 百分点,FPS达到了120 帧以上,参数量仅有2.0 M.因此,改进后的火灾检测模型可以很好地满足实时检测的要求,并且在不同数据集上具有良好的泛化能力和鲁棒性.

In order to improve the accuracy of fire detection in the complex circumstances,reduce the rate of false detection and missed detection,and enhance the speed of fire detection,an improved strategy based on YOLOv8 algorithm is proposed.Focused at the problem that YOLOv8 network has a deep structure and high computational complexity when dealing with complex fire images or multi-target de-tection,the backbone network of the initial model is replaced by MobileViT network,so as to build a lightweight fire detection model and improve the speed of fire detection while ensuring the detection accuracy.EMA(Efficient Multi-Scale Attention Module with Cross-Spatial Learning)is embedded in the neck structure to strengthen the semantic and spatial information of the fire feature map,ensure the integrity of channel dimensional information,and improve the accuracy of fire detection.MPDIoU loss function is employed to solve the failure problem of YOLOv8 algorithm when detecting flame targets with small size and long boundary frames.Experiments were conducted on the self-built dataset and the public dataset,and the experimental results showed that the improved algorithm has the best performance on the two data sets,and the accuracy of fire detection reaches 92.3%and 95.9%respectively.Compared with the original algorithm,the accuracy of fire detection is up to 6.3 percentage points,the average accuracy is up to 9.2 percentage points,and the mAP@0.5 is up to 8.4 percentage points.The FPS reaches more than 120 frames,and the number of parameters is only 2.0 M.As a result,the improved fire detection model can well meet the requirements of real-time detection,and different data sets are endowed with fine generalization ability and robustness.

王召龙;张洁

南京邮电大学 计算机学院,江苏 南京 210023

计算机与自动化

火灾检测YOLOv8MobileViT多尺度注意力机制MPDIoU

fire detectionYOLOv8MobileViTmulti-scale attention mechanismMPDIoU

《计算机技术与发展》 2024 (010)

61-68 / 8

国家重点研发计划项目(2018YFB1500902)

10.20165/j.cnki.ISSN1673-629X.2024.0206

评论