CMNER:基于微博的中文多模态实体识别数据集OACSTPCD
CMNER:A Chinese Multimodal NER Dataset Based on Weibo
多模态命名实体识别(MNER)旨在通过相关图像的辅助从文本中定位并分类命名实体.目前,中文多模态命名实体识别研究缺乏相关的人工标注数据,限制了中文多模态命名实体识别的发展.该文旨在构建一个基于社交媒体平台的中文MNER数据集,收集了5 000 条微博帖子和18 326 张相应的图像,并人工标注了其中的人名、地名、组织机构名和其他类实体.该文在此数据集上应用了ACN模型和UMT模型进行基线实验.实验结果表明,两个模型的F1 值分别达到了74.22%和89.50%,证明了数据集的有效性和可用性.此外,该文还进行了跨语言迁移学习实验,证明了中文和英文MNER数据能够相互补充,增强实体识别模型的性能.为了促进中文多模态命名实体识别的相关研究,该文公开了CMNER数据集和相关代码.
Multimodal Named Entity Recognition(MNER)is a pivotal task designed to extract and classify named entities from text with the assistance of pertinent images.Nonetheless,a notable paucity of manual annotation data for Chinese MNER has considerably impeded the progress of Chinese multimodal named entity recognition.We compile a Chinese Multimodal NER dataset(CMNER)utilizing data sourced from social media platform,encompassing 5 000 Weibo posts paired with 18 326 corresponding images.The entities are classified into four distinct categories:person,location,organization,and miscellaneous.We applied the ACN model and UMT model as baseline experiments on CMNER.The experimental results indicate that the F1 scores of the two models reach 74.22%and 89.50%,respectively,validating the effectiveness of the dataset.Furthermore,we conducted cross-lingual experiments and the results substantiate that Chinese and English multimodal NER data can mutually enhance the performance of the NER model.To promote related research on Chinese MNER,the CMNER and related code are released.
季源泽;李霏
武汉大学 国家网络安全学院 空天信息安全与可信计算教育部重点实验室,湖北 武汉 430072
计算机与自动化
多模态命名实体识别图像命名实体中文跨语言
multimodal named entity recognitionimagenamed entityChinesecross-lingual
《计算机技术与发展》 2024 (010)
110-117 / 8
国家重点研发计划(2022YFB3103602);湖北省自然科学基金(2021CFB385)
评论