基于YOLO框架的轻量化SAR图像舰船检测方法研究OA
Research on Lightweight SAR Image Ship Detection Method Based on YOLO Framework
针对现有的目标检测算法对合成孔径雷达(Synthetic Aperture Radar,SAR)图像中的舰船目标检测精度低、速度慢的问题,提出了一种基于YOLO框架的轻量化SAR图像舰船检测算法.基于YOLO框架,用Ghost模块和高效通道注意力(Efficient Channel Attention,ECA)机制来改进ShuffleNetV2网络构建新的骨干网络,以降低内存访问成本,提高特征提取能力;将颈部网络中的C3模块引入多尺度金字塔切分注意力(Pyramid Split Attention,PSA)模块,充分提取不同尺度特征图的空间信息,加强多尺度特征融合能力;用轻量级GSConv卷积消除模型冗余特征,在保持检测精度的同时降低模型参数量.实验结果表明,在公开数据集SSDD上,所提模型的平均精度达到94.8%,参数量为3.10 M,模型权重大小为6.4 MB,满足SAR图像舰船实时检测的需求.
To solve the problems of low accuracy and slow speed of ship detection in Synthetic Aperture Radar(SAR)images by existing target detection algorithms,a lightweight SAR ship detection algorithm based on YOLO framework is proposed.Firstly,based on the YOLO framework,the Ghost module and Efficient Channel Attention(ECA)mechanism are used to improve the ShuffleNetV2 network to construct a new backbone network,which reduces memory access costs and improves feature extraction capabilities.Secondly,the C3 module in the neck network is introduced into the multi-scale Pyramid Split Attention(PSA)module,which fully extracts spatial information from different scale feature maps and enhances the ability of multi-scale feature fusion.Finally,the lightweight GSConv convolution is used to eliminate the redundant features of the model,which reduces the number of model parameters while maintaining the detection accuracy.The experimental results show that on the public dataset SSDD,the average accuracy of the proposed model reaches 94.8%,the parameter number is 3.10 M,and the model weight size is 6.4 MB,which meets the real-time ship detection requirements of SAR image.
唐志勇;魏雪云;江蒋伟;陈思远
江苏科技大学海洋学院,江苏镇江 212003
电子信息工程
合成孔径雷达舰船检测轻量化网络YOLO特征增强
SARship detectionlightweight networkYOLOfeature enhancement
《无线电工程》 2024 (010)
2347-2354 / 8
国家自然科学基金(61901195)National Natural Science Foundation of China(61901195)
评论