基于对抗残差网络的复杂海况舰船目标类型识别技术研究OA
Research on Ship Target Type Recognition Technology Under Complex Sea Conditions Based on Adversarial Residual Neural Network
近年来随着深度学习理论在水声领域的应用,水中目标识别技术研究取得了巨大进步.然而在工程应用实践中,应用传统的特征提取和分类器方法拼接得到的识别模型难以维持实验室性能,复杂多变的海洋信道使声信号在传感器接收前发生剧烈畸变,导致识别算法出现特征失配和过拟合问题,算法性能急剧下降.针对以上问题,提出了一种对抗残差网络(Adversarial Residual Neural Network,ARNN)模型,利用梯度反向层(Gravity Reversal Layer,GRL)结构和双标签对抗训练的方式补偿了不同水文条件下信道传播之间的差异性,使算法更能够聚焦到能够表征目标本质的特征上,具有更强的鲁棒性和更高的识别率.为验证其有效性,设计了2次实验,分别利用在南海不同海域、不同水文条件下多次采集的舰船目标机械辐射噪声信号,制作训练样本集和测试样本集以训练和测试算法模型.结果表明,相较于支持向量机(Support Vector Machine,SVM)、卷积神经网络(Convolutional Neural Network,CNN)、残差网络(Residual Neural Network,ResNet)等传统网络模型,提出的ARNN模型可以有效缓解特征失配和过拟合问题,使模型具备不同水文条件下的可移植能力,解决人工智能技术在水中目标识别工程应用中的关键问题.
In recent years,with the application of deep learning theory in the field of underwater acoustics,significant progress has been made in the research of underwater target recognition technology.However,in engineering application practice,the recognition model obtained by combining traditional feature extraction and classifier methods is difficult to maintain laboratory performance.The complex and variable ocean channels cause severe distortion of the acoustic signal before sensor reception,leading to feature mismatch and over-fitting problems in the recognition algorithm,and the algorithm performance drops sharply.The Adversarial Residual Neural Network(ARNN)model is proposed to solve the above issue.The model uses a Gradient Reversal Layer(GRL)structure and dual label adversarial training framework to compensate for the differences in channel propagation under different hydrological conditions,enabling the algorithm to focus on features that can characterize the essence of the target,with stronger robustness and higher recognition rate.To verify its effectiveness,two experiments are designed,using the mechanical radiation noise signals of ship targets collected multiple times in different sea areas and hydrological conditions in the South China Sea.Training and testing sample sets are created to train and test the algorithm model.The results show that compared to traditional network models such as Support Vector Machine(SVM),Convolutional Neural Network(CNN)and Residual Network(ResNet)model,the proposed ARNN model can effectively alleviate feature mismatch and over-fitting problems,making the model portable under different hydrological conditions and solving key problems in the application of artificial intelligence technology in water target recognition engineering.
张博轩;王少博;赵天白;罗恒光;王大宇
中国电科网络通信研究院,河北 石家庄 050081||河北省电磁频谱认知与管控重点实验室,河北 石家庄 050081中国电科网络通信研究院,河北 石家庄 050081
计算机与自动化
水中目标识别特征失配过拟合对抗训练梯度反向层
underwater target recognitionfeature mismatchover-fittingadversarial trainingGRL
《无线电工程》 2024 (010)
2355-2361 / 7
国家自然科学基金(U20B2071)National Natural Science Foundation of China(U20B2071)
评论