| 注册
首页|期刊导航|无线电工程|一种改进YOLOv8n的电力设备红外图像识别网络

一种改进YOLOv8n的电力设备红外图像识别网络

李珅 杜科 李舟演 李宁 熊岑 柳明慧 秦伦明

无线电工程2024,Vol.54Issue(10):2362-2370,9.
无线电工程2024,Vol.54Issue(10):2362-2370,9.DOI:10.3969/j.issn.1003-3106.2024.10.011

一种改进YOLOv8n的电力设备红外图像识别网络

An Improved Infrared Image Recognition Network for Power Equipment Based on YOLOv8n

李珅 1杜科 1李舟演 1李宁 1熊岑 1柳明慧 2秦伦明2

作者信息

  • 1. 国网上海市电力公司,上海 200122
  • 2. 上海电力大学电子信息工程学院,上海 201306
  • 折叠

摘要

Abstract

In view of the problems of low detection accuracy and large model calculation load in current infrared image recognition algorithms for power equipment,an improved infrared image recognition network for power equipment based on YOLOv8n,or YOLOv8n-DCSW is proposed.Firstly,in the YOLOv8n backbone network,Coordinate Attention(CA)is added and the standard convolution in the residual module is replaced with Deformable Convolution Network(DCN),which enhances the focus on small targets in complex environments and improves recognition accuracy.Secondly,the neck network is replaced with Sim-neck to reduce the computational complexity of the model.Finally,the Wise Intersection over Union(WIoU)loss function is introduced to reduce the gradient interference caused by low-quality borders and improve model recognition accuracy and convergence speed.Experimental results show that the proposed algorithm achieves a mean Average Precision(mAP)of 95.9%on the custom infrared dataset,with a computational cost of 6.9 GFLOPs.Compared to the original algorithm,the mAP has increased by 1.7%,while the computational cost has been reduced by 1.2 GFLOPs,meeting the requirements for high accuracy and low computation in the recognition of infrared images of electrical equipment.

关键词

电力设备红外图像/目标检测/YOLOv8n/可变形卷积/注意力机制/边框损失函数

Key words

infrared images of power equipment/object detection/YOLOv8n/deformable convolution/attention mechanism/bounding box loss function

分类

信息技术与安全科学

引用本文复制引用

李珅,杜科,李舟演,李宁,熊岑,柳明慧,秦伦明..一种改进YOLOv8n的电力设备红外图像识别网络[J].无线电工程,2024,54(10):2362-2370,9.

基金项目

国家电网有限公司科技项目(SGSH0000AJJS2310204)Science and Technology Project of State Grid Corporation of China(SGSH0000AJJS2310204) (SGSH0000AJJS2310204)

无线电工程

1003-3106

访问量0
|
下载量0
段落导航相关论文