|国家科技期刊平台
首页|期刊导航|无线电工程|一种改进YOLOv8n的电力设备红外图像识别网络

一种改进YOLOv8n的电力设备红外图像识别网络OA

An Improved Infrared Image Recognition Network for Power Equipment Based on YOLOv8n

中文摘要英文摘要

针对目前电力设备红外图像识别算法存在检测精度低和模型计算量大的问题,提出一种改进YOLOv8n的电力设备红外图像识别网络YOLOv8n-DCSW.在YOLOv8n主干网络中添加坐标注意力(Coordinate Attention,CA)并使用可变形卷积网络(Deformable Convolution Network,DCN)替换残差模块中的标准卷积,加强复杂环境下对小目标的关注度,提高识别精度;将颈部网络更换为Sim-neck,降低模型运算量;引入Wise交并比(Wise Intersection over Union,WIoU)损失函数减少低质量边框产生的梯度干扰,提升模型的识别精度和收敛速度.实验结果表明,所提算法在自建红外数据集上的平均精度均值(mean Average Precision,mAP)达到95.9%,计算量为6.9 GFLOPs,相较原算法mAP提高了 1.7%,同时计算量减少了 1.2 GFLOPs,满足电力设备红外图像识别的高精度和低计算量要求.

In view of the problems of low detection accuracy and large model calculation load in current infrared image recognition algorithms for power equipment,an improved infrared image recognition network for power equipment based on YOLOv8n,or YOLOv8n-DCSW is proposed.Firstly,in the YOLOv8n backbone network,Coordinate Attention(CA)is added and the standard convolution in the residual module is replaced with Deformable Convolution Network(DCN),which enhances the focus on small targets in complex environments and improves recognition accuracy.Secondly,the neck network is replaced with Sim-neck to reduce the computational complexity of the model.Finally,the Wise Intersection over Union(WIoU)loss function is introduced to reduce the gradient interference caused by low-quality borders and improve model recognition accuracy and convergence speed.Experimental results show that the proposed algorithm achieves a mean Average Precision(mAP)of 95.9%on the custom infrared dataset,with a computational cost of 6.9 GFLOPs.Compared to the original algorithm,the mAP has increased by 1.7%,while the computational cost has been reduced by 1.2 GFLOPs,meeting the requirements for high accuracy and low computation in the recognition of infrared images of electrical equipment.

李珅;杜科;李舟演;李宁;熊岑;柳明慧;秦伦明

国网上海市电力公司,上海 200122上海电力大学电子信息工程学院,上海 201306

计算机与自动化

电力设备红外图像目标检测YOLOv8n可变形卷积注意力机制边框损失函数

infrared images of power equipmentobject detectionYOLOv8ndeformable convolutionattention mechanismbounding box loss function

《无线电工程》 2024 (010)

2362-2370 / 9

国家电网有限公司科技项目(SGSH0000AJJS2310204)Science and Technology Project of State Grid Corporation of China(SGSH0000AJJS2310204)

10.3969/j.issn.1003-3106.2024.10.011

评论