| 注册
首页|期刊导航|计算机技术与发展|基于改进YOLOv5s的复杂施工现场吸烟检测

基于改进YOLOv5s的复杂施工现场吸烟检测

吴中凡 陆小锋 唐强达

计算机技术与发展2024,Vol.34Issue(10):31-37,7.
计算机技术与发展2024,Vol.34Issue(10):31-37,7.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0198

基于改进YOLOv5s的复杂施工现场吸烟检测

Smoking Detection at Construction Site Based on Improved YOLOv5s

吴中凡 1陆小锋 1唐强达2

作者信息

  • 1. 上海大学 通信与信息工程学院,上海 200444
  • 2. 上海建科工程咨询有限公司 二级单位,上海 200032
  • 折叠

摘要

Abstract

Smoking at construction sites and other complex construction sites may cause fire,explosion and other accidents,seriously en-dangering construction safety.In order to achieve smoking detection at construction sites and other construction sites,we use YOLOv5s to detect faces and cigarettes,and judge whether there is smoking behavior at the construction site according to the position relationship between faces and cigarettes.In order to improve the detection accuracy of faces and cigarettes,we make three improvements on the basis of the original model.First,the dynamic label assignment method,SIMOTA,is adopted,which improves the network recall rate and detection speed.Second,the scale-in feature interaction module,AIFI,is introduced,which enhances the network feature expression ability.Third,dynamic convolution,ODConv,is used to optimize the C3 feature extraction module,which improves the network accuracy.Experiments on self-made data sets show that the improved network has improved by more than 2%in accuracy,recall rate and average precision,and the detection speed has increased by 22%,achieving obvious performance advantages.Compared with the ma-instream algorithms,the improved algorithm has obvious advantages in detection speed and network performance,meeting the needs of smoking detection at construction sites.

关键词

施工现场/吸烟检测/目标检测/YOLO/注意力机制

Key words

construction site/cigarette detection/object detection/YOLO/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

吴中凡,陆小锋,唐强达..基于改进YOLOv5s的复杂施工现场吸烟检测[J].计算机技术与发展,2024,34(10):31-37,7.

基金项目

上海市科委科研计划(22511103403,22511103304) (22511103403,22511103304)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文