| 注册
首页|期刊导航|土壤|基于辅助变量的紫色土耕地土壤有机质空间预测

基于辅助变量的紫色土耕地土壤有机质空间预测

刘雅璇 于慧 罗勇

土壤2024,Vol.56Issue(4):857-865,9.
土壤2024,Vol.56Issue(4):857-865,9.DOI:10.13758/j.cnki.tr.2024.04.020

基于辅助变量的紫色土耕地土壤有机质空间预测

Soil Organic Matter Prediction of Purple Soil Based on Auxiliary Variables

刘雅璇 1于慧 2罗勇3

作者信息

  • 1. 中国科学院·水利部成都山地灾害与环境研究所,成都 610299||昆明理工大学国土资源工程学院,昆明 650093
  • 2. 中国科学院·水利部成都山地灾害与环境研究所,成都 610299
  • 3. 成都理工大学地理与规划学院,成都 610059
  • 折叠

摘要

Abstract

This study collected a total of 135 samples from purple soil farmlands in the hilly region of central Sichuan.Based on the GEE cloud platform,high-resolution Sentinel-2A data,SRTMGLlv3.0 elevation data,and SoilGrids soil attribute data were invoked,and texture feature data was innovatively added.Two prediction models were constructed by using gradient enhancement decision tree(GBDT)and random forest(RF)to invert SOM.The results showed that SOM content of purple soil farmlands in the study area was relatively low,with the level ranging from 2 to 6 levels.The models constructed by GBDT algorithm had higher prediction accuracy(R2=0.687,r=0.829,RMSE=5.668 g/kg)compared to RF algorithm(R2=0.514,r=0.717,RMSE=6.765 g/kg).The R2 with texture features increased by 6.80%and 1.70%,respectively.TGIS study can provide a new scientific approach for SOM prediction.

关键词

土壤有机质/机器学习/紫色土/GEE

Key words

Soil organic matter/Machine learning/Purple soil/GEE

分类

农业科技

引用本文复制引用

刘雅璇,于慧,罗勇..基于辅助变量的紫色土耕地土壤有机质空间预测[J].土壤,2024,56(4):857-865,9.

基金项目

国家自然科学基金项目(41971273)和四川省地质调查研究院财政资金项目(SCIGS-CZDXM-2024014)资助. (41971273)

土壤

OA北大核心CSTPCD

0253-9829

访问量0
|
下载量0
段落导航相关论文