| 注册
首页|期刊导航|西南交通大学学报|基于多尺度感知的密集人群计数网络

基于多尺度感知的密集人群计数网络

李恒超 刘香莲 刘鹏 冯斌

西南交通大学学报2024,Vol.59Issue(5):1176-1183,1214,9.
西南交通大学学报2024,Vol.59Issue(5):1176-1183,1214,9.DOI:10.3969/j.issn.0258-2724.20220823

基于多尺度感知的密集人群计数网络

Dense Crowd Counting Network Based on Multi-scale Perception

李恒超 1刘香莲 2刘鹏 2冯斌3

作者信息

  • 1. 西南交通大学信息科学与技术学院,四川成都 611756||西南交通大学综合交通大数据应用技术国家工程实验室,四川成都 611756
  • 2. 西南交通大学信息科学与技术学院,四川成都 611756
  • 3. 西南交通大学体育学院,四川成都 611756
  • 折叠

摘要

Abstract

A dense crowd counting network based on multi-scale perception was proposed to solve the problems of diverse target scales and large-scale changes of crowds in dense crowd scenes.Firstly,since the small-scale targets account for a relatively large proportion of the images,a dilated convolution module was introduced based on the visual geometry group 2016(VGG-16)network to mine the detailed information in the images.Then,by utilizing the multi-scale information of the target,a novel context-aware module was designed to extract the contrast features between different scales.Finally,In view of the continuous change of target scales,the multi-scale feature aggregation module was designed to improve the sampling range of dense scales,enhance the interaction of multi-scale information,and thus improve the model performance.The experimental results show that mean absolute errors(MAEs)of the proposed method are 62.5,6.9,and 156.5,and the root mean square errors(RMSEs)are 95.7,11.0,and 223.3 on ShangHai Tech(Part_A/Part_B)and UCF_CC_50 datasets,respectively.Compared with the optimal method of comparison model,the MAE and RMSE are reduced by 1.1%and 4.3%on the UCF_QNRF dataset and by 8.7%and 13.9%on the NWPU dataset.

关键词

人群密度估计/多尺度聚合/空洞卷积/密度图

Key words

crowd density estimation/multi-scale aggregation/dilated convolution/density map

分类

信息技术与安全科学

引用本文复制引用

李恒超,刘香莲,刘鹏,冯斌..基于多尺度感知的密集人群计数网络[J].西南交通大学学报,2024,59(5):1176-1183,1214,9.

基金项目

国家自然科学基金项目(62271418) (62271418)

四川省自然科学基金项目(23NSFSC0058) (23NSFSC0058)

西南交通大学学报

OA北大核心CSTPCD

0258-2724

访问量0
|
下载量0
段落导航相关论文