| 注册
首页|期刊导航|西南交通大学学报|基于双向长短期记忆网络的城市快速路合流区车速预测

基于双向长短期记忆网络的城市快速路合流区车速预测

谢济铭 夏玉兰 秦雅琴 赵荣达 刘兵 段国忠 陈金宏

西南交通大学学报2024,Vol.59Issue(5):1235-1244,10.
西南交通大学学报2024,Vol.59Issue(5):1235-1244,10.DOI:10.3969/j.issn.0258-2724.20220005

基于双向长短期记忆网络的城市快速路合流区车速预测

Traffic Speed Prediction in Merging Zone of Urban Expressway Based on Bidirectional Long Short-Term Memory Network

谢济铭 1夏玉兰 1秦雅琴 1赵荣达 2刘兵 2段国忠 2陈金宏2

作者信息

  • 1. 昆明理工大学交通工程学院,云南昆明 650550
  • 2. 云南省交通投资建设集团有限公司,云南昆明 650103
  • 折叠

摘要

Abstract

Accurate prediction of microscopic traffic parameters in atypical complex scenes is a prerequisite to ensure stable operation of the intelligent vehicle infrastructure cooperative systems(IVICS).To solve the problem of vehicle speed distribution disorder and difficulty in prediction caused by bottleneck phenomenon during peak hours in the merging area under IVICS conditions,First,using the UAV video,the full-sample high-precision vehicle trajectory data of the intertwined area during peak hours are extracted from a wide-area view.Then,as bidirectional long short-term memory(Bi-LSTM)networks cost long time and affect the prediction performance of the model when training parameters are manually set,a BHO-Bi-LSTM(bayesian hyperparameter optimization bidirectional long short-term memory)integrated vehicle speed prediction model based on Bayesian hyperparameters optimization is proposed.Finally,the classical multiple linear regression model and Bi-LSTM model of vehicle speed prediction are constructed for comparison.The results show that the BHO-Bi-LSTM model outperforms other models,with a goodness-of-fit and rank correlation of 91.05%and 94.87%,respectively,and error mean,error standard deviation,mean square error,root mean square error,and normalized root mean square error of 0.0561,0.4556,0.2106,0.4589,and 0.0785,respectively,which can overcome the disadvantage in prediction of complicated traffic speeds during peak hours.

关键词

交通工程/速度预测/多车道交织区/轨迹数据/贝叶斯优化

Key words

traffic engineering/speed prediction/multiple weaving area/trajectory data/Bayesian optimization

分类

交通工程

引用本文复制引用

谢济铭,夏玉兰,秦雅琴,赵荣达,刘兵,段国忠,陈金宏..基于双向长短期记忆网络的城市快速路合流区车速预测[J].西南交通大学学报,2024,59(5):1235-1244,10.

基金项目

国家重点研发计划(2018YFB1600500) (2018YFB1600500)

国家自然科学基金项目(71861016) (71861016)

西南交通大学学报

OA北大核心CSTPCD

0258-2724

访问量0
|
下载量0
段落导航相关论文