| 注册
首页|期刊导航|燕山大学学报|基于SVM稀疏表示的类特别字典学习算法

基于SVM稀疏表示的类特别字典学习算法

宋银涛 杨宝庆 刘计 赵宇 闫敬

燕山大学学报2024,Vol.48Issue(5):437-445,9.
燕山大学学报2024,Vol.48Issue(5):437-445,9.DOI:10.3969/j.issn.1007-791X.2024.05.006

基于SVM稀疏表示的类特别字典学习算法

Class-specific dictionary learning algorithm based on SVM sparse representation

宋银涛 1杨宝庆 1刘计 1赵宇 1闫敬2

作者信息

  • 1. 扬州大学 信息工程学院,江苏 扬州 225009
  • 2. 燕山大学 电气工程学院,河北 秦皇岛 066004
  • 折叠

摘要

Abstract

In recent years,the dependence on large-scale training samples in deep learning has become a prominent issue.Dictionary learning algorithms have been proposed as a solution for small sample datasets.To further enhance the competitive advantage of dictionary learning in image classification,a class-specific dictionary learning algorithm based on support vector machine is proposed in this paper.The coefficient disparity constraint is introduced innovatively.The constraint term fuses the originally independent reconstruction,sparse,and discriminative terms into a unified learning framework,significantly improving the discriminative ability of the dictionary.It has been demonstrated through experiments that the classification performance of this model outperforms other state-of-the-art dictionary learning models.Additionally,a method to combine deep learning pre-training with dictionary learning algorithms is proposed,which has been experimentally demonstrated to significantly improve the classification performance of dictionary learning algorithms in large-scale training samples.

关键词

字典学习/稀疏表示/支持向量机/系数相异性约束项

Key words

dictionary learning/sparse representation/support vector machine/coefficient disparity constraint

分类

信息技术与安全科学

引用本文复制引用

宋银涛,杨宝庆,刘计,赵宇,闫敬..基于SVM稀疏表示的类特别字典学习算法[J].燕山大学学报,2024,48(5):437-445,9.

基金项目

国家自然科学基金资助项目(62205283) (62205283)

燕山大学学报

OA北大核心CSTPCD

1007-791X

访问量0
|
下载量0
段落导航相关论文