|国家科技期刊平台
首页|期刊导航|中国光学(中英文)|夜间动物图像自监督学习增强与检测方法

夜间动物图像自监督学习增强与检测方法OA北大核心CSTPCD

Self-supervised learning enhancement and detection methods for nocturnal animal images

中文摘要英文摘要

为了解决动物夜间实时监测所面临的图像曝光度低、对比度低、特征提取困难等问题,通过研究轻量化自监督深度神经网络Zero-Denoise和改进型YOLOv8模型,来进行夜间动物目标的图像增强与精准识别.首先,通过轻量化的PDCE-Net进行第一阶段快速增强.提出了一个新的光照损失函数,并利用参数可调的Gamma校正原图与快速增强图,在基于Retinex原理和最大熵理论的PRED-Net中进行第二阶段的重增强.然后,改进YOLOv8模型,并对重增强后的图像进行目标识别.最后,在LOL数据集(low-light dataset)与自建动物数据集进行实验分析,验证Zero-Denoise网络和改进型YOLOv8模型对于夜间动物目标监测的改善效果.试验结果显示,Zero-Denoise的mAP值网络在LOL数据集上的PSNR、SSIM与MAE指标达到28.53、0.76、26.15,结合改进型YOLOv8在自建动物数据集上的mAP值比YOLOv8基线模型提升了 7.1%.使用Zero-Denoise和改进型YOLOv8能获得良好的夜间动物目标图像.结果表明所提方法可用于夜间动物目标的精确监测.

In order to solve the problems of low image exposure,low contrast and difficulty of feature extrac-tion in real-time animal monitoring at night,we proposed a lightweight self-supervised deep neural network Zero-Denoise and an improved YOLOv8 model for image enhancement and accurate recognition of nocturn-al animal targets.The first stage of rapid enhancement was performed by lightweight PDCE-Net.A new lighting loss function was proposed,and the second stage of re-enhancement was carried out in PRED-Net based on the Retinex principle and the maximum entropy theory,using the original image and fast enhance-ment image corrected by the parameter adjustable Gamma.Then,the YOLOv8 model was improved to re-cognize the re-enhanced image.Finally,experimental analysis was conducted on the LOL dataset and the self-built animal dataset to verify the improvement of the Zero-Denoise network and YOLOv8 model for nocturnal animal target monitoring.The experimental results show that the PSNR,SSIM,and MAE indicat-ors of the Zero-Denoise network on the LOL dataset reach 28.53,0.76,and 26.15,respectively.Combined with the improved YOLOv8,the mAP value of the baseline model on the self-built animal dataset increases by 7.1%compared to YOLOv8.Zero-Denoise and improved YOLOv8 can achieve good quality images of nocturnal animal targets,which can be helpful in further study of accurate methods of monitoring these targets.

王驰;沈晨;黄庆;张国峰;卢汉;陈金波

上海大学机电工程与自动化学院,上海 200444中国航空工业集团公司洛阳电光设备研究所,河南洛阳 471023

计算机与自动化

夜间动物监测低光增强自监督学习Retinex低光去噪

nocturnal animal detectionlow-light enhancementself-supervised learningRetinexlow-light denoising

《中国光学(中英文)》 2024 (005)

1087-1097 / 11

国家自然科学基金项目(No.62175144);北京市航空智能遥感装备工程技术研究中心开放基金课题(No.AIRSE20233) Supported by the National Natural Science Foundation of China(No.62175144);Beijing Engineering Research Center of Aerial Intelligent Remote Sensing Equipments Open Fund(No.AIRSE20233)

10.37188/CO.2024-0011

评论