平滑交互式压缩网络的红外小目标检测算法OA北大核心CSTPCD
Smooth interactive compression network for infrared small target detection
红外小目标检测是对地观测、抢险救灾等诸多领域的重要课题,一直受到学界的广泛关注.由于红外小目标通常只占据几十个像素且分布在整个背景中,因此大范围内探索图像特征之间的语义信息以挖掘目标与背景之间的差异对检测性能的提升至关重要.然而,传统卷积神经网络的编码局域性与计算资源的巨大需求削弱了网络捕获小目标形状和位置的能力,极易产生漏检与虚警.基于此,提出了一种平滑交互式压缩网络模型,主要包含平滑交互模块与交叉关注模块.平滑交互模块在拓展特征图感受野的同时增添其依赖性,提升了网络在复杂背景条件下检测性能的鲁棒性.交叉关注模块综合考量信道的贡献度与剪枝的可解释性,从而动态融合不同分辨率的特征图.最后,在公开的 SIRST数据集和 IRSTD-1 K数据集上的大量试验结果表明,提出的网络可以有效地解决目标丢失、虚警率高、视觉效果不佳等问题.以SIRST数据集为例,与性能第 2 的模型相比,IoU、nIoU 和Pd 分别提高了约 3.05%、3.41%和 1.02%;Fa和 FLOPs分别降低了约 33.33%和 82.30%.
Infrared Small Target Detection is a critical focus of various fields,including earth observation and disaster relief efforts,receiving considerable attention within the academic community.Since infrared small targets often occupy just a few dozen pixels and are scattered within complex backgrounds,it becomes paramount to extract semantic information from a broad range of image features to distinguish targets from their surroundings and enhance detection performance.Traditional convolutional neural networks,due to their limited receptive fields and substantial computational demands,face challenges in effectively capturing the shape and precise positioning of small targets,leading to missed detections and false alarms.In response to these challenges,this paper proposes a novel Smooth Interactive Compression Network comprising two main components:the Smooth Interaction Module and the Cross Compression Module.The Smooth Interaction Module extends the feature map′s receptive field and enhances inter-feature dependencies,thus bolstering the network's detection robustness in complex background scenarios.The Cross Compression Module takes into account channel contributions and the interpretability of pruning,dynamically fusing feature maps of varying resolutions.Extensive experiments conducted on the publicly available SIRST dataset and IRSTD-1 K dataset demonstrate that the proposed network effectively addresses issues such as target loss,a high false alarm rate,and subpar visual results.Taking the SIRST dataset as an example,compared to the second-best performing model,the proposed model achieved a remarkable improvement in metrics:IoU,nIoU,and Pd are increased by 3.05%,3.41%,and 1.02%,respectively.Meanwhile,Fa and FLOPs are decreased by 33.33% and 82.30%,respectively.
张铭津;周楠;李云松
西安电子科技大学 通信工程学院,陕西 西安 710071
电子信息工程
红外小目标检测深度学习网络编码模型压缩
Infrared Small Target Detectiondeep learningnetwork codingmodel compression
《西安电子科技大学学报(自然科学版)》 2024 (004)
1-14 / 14
国家自然科学基金(62272363,62036007);中国科协青年人才托举工程(2021QNRC001);星载计算机与电子技术创新联合实验室2023年度开放基金(2024KFKT001-1)
评论