|国家科技期刊平台
首页|期刊导航|传感技术学报|具有紧凑结构的芯片声表面波拓扑延迟线设计与分析

具有紧凑结构的芯片声表面波拓扑延迟线设计与分析OA北大核心CSTPCD

Design and Analysis of Chip Surface Acoustic Wave Topological Delay Lines with a Compact Structure

中文摘要英文摘要

声表面波(SAW)延迟线常用于现代射频信号处理、陀螺仪、传感等领域,特别是在雷达工业中获得了广泛的运用.声表面波延迟线作为宽带通信、电子对抗、多相调制等雷达系统中的关键器件,其结构存在简并化、紧凑化的迫切需求.然而,传统的基于电声叉指换能器的声表面波延迟线器件主要采用速度更低的衬底材料或者运用多个叉指换能器的方式实现延迟时间的增加,这会导致机电耦合系数降低,且器件结构复杂,器件尺寸大.因此,利用拓扑保护边缘态的抗弯曲特性构建了一种片上声表面波延迟线,实现了声表面波的传输路径折叠,并对声表面波的速度进行了调制,实现了在极为紧凑的结构设计下较长的延迟时间.结果显示,在相同的器件体积和叉指换能器配置下,延迟时间比传统延迟线增加了4 倍以上,并且还保留优化拓展空间.这种声表面波拓扑延迟与微机电系统(MEMS)工艺兼容,可以简便地集成到MEMS器件和集成电路中,为先进人造声子晶体材料在器件集成化领域应用奠定了设计基础.

Surface acoustic wave(SAW)delay lines have been widely utilized in modern RF signal processing,gyrometers,sensing,and particularly in the radar industry.They serve as core devices in radar systems such as spread-spectrum communication systems,electron-ic countermeasure systems,and multiphase modulation systems.Therefore,there is a pressing need for SAW delay lines with simple and compact structures.Nevertheless,in traditional electroacoustic interdigital transducer-based SAW delay lines,increasing the delay time can only be accomplished by either employing substrate materials with lower velocities or using multiple IDTs,which results in lower electromechanical coupling coefficients and a more complex device structure.Herein,an on-chip SAW delay line that exploits the ben-ding immunity characteristic of the topological protected edge state is proposed.Through folding the transmission path and modulating the velocity of the SAW,the delay line is capable of attaining a large delay time within a very compact structure.Under the same device volume and interdigital transducer configuration,the delay time is increased by more than 4 times compared with the traditional delay line,and can be further optimized.This surface acoustic wave topological delay line is compatible with Micro-Electro-Mechanical sys-tems(MEMS)processes,so,it can be easily integrated into MEMS devices and integrated circuits,clearing the path for the application of advanced artificial materials in integrated devices.

孙毅鹏;王济乾;孟伟;王越飞;胡永芳;严坤;韩磊

南京电子技术研究所,江苏 南京 210039||东南大学MEMS教育部重点实验室,江苏 南京 210096南京电子技术研究所,江苏 南京 210039东南大学MEMS教育部重点实验室,江苏 南京 210096

电子信息工程

多物理场仿真声表面波延迟线声子晶体

multi-physics simulationsurface acoustic wavedelay linephononic crystal

《传感技术学报》 2024 (009)

1473-1477 / 5

10.3969/j.issn.1004-1699.2024.09.001

评论