| 注册
首页|期刊导航|储能科学与技术|基于大数据和人工智能的储能系统故障预测与诊断方法研究

基于大数据和人工智能的储能系统故障预测与诊断方法研究

李根 刘珊珊

储能科学与技术2024,Vol.13Issue(10):3653-3655,3.
储能科学与技术2024,Vol.13Issue(10):3653-3655,3.DOI:10.19799/j.cnki.2095-4239.2024.0902

基于大数据和人工智能的储能系统故障预测与诊断方法研究

Research on fault prediction and diagnosis methods of energy storage system based on big data and artificial intelligence

李根 1刘珊珊2

作者信息

  • 1. 广东工商职业技术大学人工智能与大数据学院,广东 肇庆 526000
  • 2. 广东财贸职业学院数字技术学院,广东 清远 511500
  • 折叠

摘要

Abstract

With the rapid development of energy storage grid technology and new energy electric vehicle technology,the global demand for energy storage systems is increasing.However,the complexity of the application environment and the large-scale battery composition increase the probability of failure of the energy storage system.This paper describes the research on big data technology and artificial intelligence technology in energy storage system fault prediction and diagnosis from two perspectives.Big data technology can analyze a large amount of energy data,thereby improving the production and utilization efficiency of energy storage systems and reducing energy waste and loss.Artificial intelligence technology can mine the valuable information hidden behind big data,train energy data,and predict and diagnose energy storage systems.The integration of big data technology and artificial intelligence technology can process and analyze a large amount of energy data,thereby improving the efficiency of energy storage systems,predicting and diagnosing whether energy storage systems have failed,and promoting the monitoring and management of energy storage systems.

关键词

储能系统/故障预测和诊断/大数据技术/人工智能

Key words

energy storage system/fault prediction and diagnosis/big data technology/artificial intelligence

分类

信息技术与安全科学

引用本文复制引用

李根,刘珊珊..基于大数据和人工智能的储能系统故障预测与诊断方法研究[J].储能科学与技术,2024,13(10):3653-3655,3.

基金项目

2023年广东省教育厅青年创新人才项目(自然科学)(2023KQNCX143). (自然科学)

储能科学与技术

OA北大核心CSTPCD

2095-4239

访问量0
|
下载量0
段落导航相关论文