|国家科技期刊平台
首页|期刊导航|重庆理工大学学报|一种针对室内关键目标检测的改进YOLOv8算法

一种针对室内关键目标检测的改进YOLOv8算法OA北大核心CSTPCD

An improved YOLOv8 algorithm for indoor critical target detection

中文摘要英文摘要

随着社会服务型机器人的发展,室内目标检测成为机器人识别场景的重要任务.针对现有网络在室内目标检测任务中存在的检测精度低、检测速度慢、难以应用在嵌入式设备上的问题,提出了一种基于YOLOv8的轻量化改进网络.针对场景中存在难以识别的小目标的问题,增加一个检测头以提高对小目标的检测精度;引入Ghost Bottle-neck替换网络Neck部分中C2f模块中的bottlencek,将网络中后半部分卷积中的SiLu激活函数替换为H-swish激活函数,减少网络的参数量和计算量,提高检测速度,降低网络的移植难度;在Neck部分中添加MRLA注意力机制,加强不同层之间的联系,增加特征提取能力,提高整体识别精度.实验结果表明:在室内场景数据集上,改进后的算法较原算法平均精度提升了3.6%,检测速度为72 frame/s,同时网络参数量较原网络减少约11%,能满足检测的准确性和实时性,优于目前主流算法.

With the development of social service robots,indoor target detection has become an important task for robots to identify scenes.To address the low detection accuracy,slow detection speed,and difficulty in applying to embedded devices in the task of indoor target detection of existing networks,this paper proposes an improved lightweight network based on YOLOv8 algorithm.First,to overcome the difficulty in identifying scenes,a detection head is added to improve the detection accuracy of small targets.Then,Ghost Bottleneck is introduced to replace the bottleneck in the C2f module in the Neck part of the network and the SiLu activation function in the convolution in the latter half of the network is replaced with the H-swish activation function to reduce the number of parameters and computation and to improve the network ' s performance.The number of parameters and the amount of computation are reduced,the detection speed improved and the difficulty of network transplantation decreased.Next,MRLA attention mechanism is added in the Neck part to strengthen the connection between different layers,increase the feature extraction ability and improve the overall recognition accuracy.Our experimental results show on the indoor scene dataset,the improved algorithm improves the average accuracy by 3.6% compared with the original one.The detection speed is 72 frame/s.Meanwhile,the number of network parameters is reduced by approximately 11% compared with that of the original one,meeting the accuracy requirements and real-time performance of detection and outperforming the current mainstream algorithms.

岳有军;张远锟;赵辉;王红君

天津理工大学 电气工程与自动化学院,天津 300384天津市复杂系统控制理论及应用重点实验室,天津 300384天津理工大学 电气工程与自动化学院,天津 300384||天津市复杂系统控制理论及应用重点实验室,天津 300384

计算机与自动化

目标检测YOLOv8室内场景注意力机制GhostNet

target detectionYOLOv8indoor sceneattention mechanismghostnet

《重庆理工大学学报》 2024 (017)

143-149 / 7

天津市科技支撑计划项目(19YFZCSN00360)

10.3969/j.issn.1674-8425(z).2024.09.018

评论