| 注册
首页|期刊导航|重庆理工大学学报|一种针对室内关键目标检测的改进YOLOv8算法

一种针对室内关键目标检测的改进YOLOv8算法

岳有军 张远锟 赵辉 王红君

重庆理工大学学报2024,Vol.38Issue(17):143-149,7.
重庆理工大学学报2024,Vol.38Issue(17):143-149,7.DOI:10.3969/j.issn.1674-8425(z).2024.09.018

一种针对室内关键目标检测的改进YOLOv8算法

An improved YOLOv8 algorithm for indoor critical target detection

岳有军 1张远锟 2赵辉 3王红君2

作者信息

  • 1. 天津理工大学 电气工程与自动化学院,天津 300384
  • 2. 天津市复杂系统控制理论及应用重点实验室,天津 300384
  • 3. 天津理工大学 电气工程与自动化学院,天津 300384||天津市复杂系统控制理论及应用重点实验室,天津 300384
  • 折叠

摘要

Abstract

With the development of social service robots,indoor target detection has become an important task for robots to identify scenes.To address the low detection accuracy,slow detection speed,and difficulty in applying to embedded devices in the task of indoor target detection of existing networks,this paper proposes an improved lightweight network based on YOLOv8 algorithm.First,to overcome the difficulty in identifying scenes,a detection head is added to improve the detection accuracy of small targets.Then,Ghost Bottleneck is introduced to replace the bottleneck in the C2f module in the Neck part of the network and the SiLu activation function in the convolution in the latter half of the network is replaced with the H-swish activation function to reduce the number of parameters and computation and to improve the network ' s performance.The number of parameters and the amount of computation are reduced,the detection speed improved and the difficulty of network transplantation decreased.Next,MRLA attention mechanism is added in the Neck part to strengthen the connection between different layers,increase the feature extraction ability and improve the overall recognition accuracy.Our experimental results show on the indoor scene dataset,the improved algorithm improves the average accuracy by 3.6% compared with the original one.The detection speed is 72 frame/s.Meanwhile,the number of network parameters is reduced by approximately 11% compared with that of the original one,meeting the accuracy requirements and real-time performance of detection and outperforming the current mainstream algorithms.

关键词

目标检测/YOLOv8/室内场景/注意力机制/GhostNet

Key words

target detection/YOLOv8/indoor scene/attention mechanism/ghostnet

分类

信息技术与安全科学

引用本文复制引用

岳有军,张远锟,赵辉,王红君..一种针对室内关键目标检测的改进YOLOv8算法[J].重庆理工大学学报,2024,38(17):143-149,7.

基金项目

天津市科技支撑计划项目(19YFZCSN00360) (19YFZCSN00360)

重庆理工大学学报

OA北大核心

1674-8425

访问量4
|
下载量0
段落导航相关论文